| POCKET GUIDES

<
Secure

RESTful APIs

Simple Solutions for Beginners

Massimo Nardone

ApPress

Apress Pocket Guides

Apress Pocket Guides present concise summaries of cutting-edge
developments and working practices throughout the tech industry. Shorter
in length, books in this series aims to deliver quick-to-read guides that are
easy to absorb, perfect for the time-poor professional.

This series covers the full spectrum of topics relevant to the modern
industry, from security, Al, machine learning, cloud computing, web
development, product design, to programming techniques and business
topics too.

Typical topics might include:

e A concise guide to a particular topic, method, function
or framework

o Professional best practices and industry trends
e Asnapshot of a hot or emerging topic
e Industry case studies

o Concise presentations of core concepts suited for
students and those interested in entering the tech
industry

e Shortreference guides outlining ‘need-to-know’
concepts and practices.

More information about this series at https://link.springer.com/
bookseries/17385.

https://link.springer.com/bookseries/17385
https://link.springer.com/bookseries/17385

Secure RESTful APIs

Massimo Nardone

Apress’

Secure RESTful APIs: Simple Solutions for Beginners

Massimo Nardone
Helsinki, Finland

ISBN-13 (pbk): 979-8-8688-1284-2 ISBN-13 (electronic): 979-8-8688-1285-9
https://doi.org/10.1007/979-8-8688-1285-9

Copyright © 2025 by Massimo Nardone

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Melissa Duffy

Development Editor: Laura Berendson

Editorial Assistant: Gryffin Winkler

Cover designed by eStudioCalamar

Distributed to the book trade worldwide by Springer Science+Business Media New York,

1 New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com;
for reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub. For more detailed information, please visit https://www.apress.
com/gp/services/source-code.

If disposing of this product, please recycle the paper

https://doi.org/10.1007/979-8-8688-1285-9

This book is dedicated to the memory of my loving late
father Giuseppe. Your support, your education, your values
made me the man I am now. You will be loved and missed
forever. I also would like to dedicate this book to my
children Luna, Leo and Neve. Your love and support mean
everything to me.

—Massimo

Table of Contents

About the AUhOrc.cccemmmsemmmmsnsmmssssmsssssssssssssas s ssasssssnnssssnnsnssnnnnns xi
About the Technical REVIEWETcsscesssssmssssansssssnsssssnsssssnsssssnsssssnnss xiii
Acknowledgments.......ccccvumnsssssnmssnmmmmsssssssssssssnssssssssssssssnsnssssssssssnnnnnns XV
Introduction........cccccnnmmmnssmnmsssnnmsssnsmssssnssssnsssssnsssssnnssssnnnnssnnnnssnnnnnnns Xvii
Chapter 1: Introduction to RESTful APIS.......c..ccccmmmnsnmmnmmssssnnnsssssssnnsnns 1
What Are the Major Differences Between REST and SOAP?ccccvvvervveriernenns 1
How to Combine REST and API to Create RESTful API?..........ccooivvnenercierneen 2
WRHAL IS JSON? ... 3
What Are the RESTful APl Key CONCEPLS?covererermrrnerenesesese s sseesennes 4
What Are the HTTP Methods or VErbSs? ... 5
What Are the HTTP Request Status Codes?covvvrrrennerinsenssssessessssssessessenns 6
ProDIBM ... ———————————— 7
SOIULION ... e 7
ProDIBM ... ———————————— 8
SOIULION ... e 8
ProDIBM ... ———————————— 9
SOIULION ... e 9
1] 4= 13

vii

TABLE OF CONTENTS

Chapter 2: Key Security Concerns and Risks for RESTful APIs........... 15
What Are the RESTful APl Key Security CONCEINS?cccoecevrvererenerenerensesennnens 15
What Are the Most Common Sources of RiSK?........c.ocoreirrecrnneserenersseseneens 17
What Are the Common Risks Associated with RESTful APIS?ccccoeveerenenene 18
What Are the Most Common RESTful APIs Risk Mitigation Strategies? 21
1] 4= 22

Chapter 3: Data Protection and Validation for RESTful APIs...............23

What Is Data ProteCtion?...........ccccvrriinsnnnnnsssssssssssssese s sssssesens 23

1. What Are the Main Key Objectives of Data Protection?ccceevvvierenne. 23

2. Why Is Data Protection Important?...........ccccvevrevvinveniennnensensesesessensensenns 24

3. What Are the Most Common Data Protection Practices?...........cccovrerennan 24

4. What Are the Most Important Types of Data Protection?.........cccccvvviernens 25

RESTful APl Data SECUNILYcccoerueierircrircrer et se s 26

5. What Are the Key Principles for RESTful APl Data Security?ccccveeruene 26

6. What Does RESTful API Security LOOK LiKe?........c.ccccvveeernvernienerescrensenenne 33

Why Do Data Validation for RESTful APIS and HOW?ccoeenreenerencrnscnenenens 39

(0]] T T 40

£ 0] 11 0] 40

7. How to Perform Data Validation in RESTful APIS?cccccvvenrencrenicene. 41

SUMMANY....eieerrresere s ne s e e e e e 43

Chapter 4: JSON Web Token (JWT) Authentication.........ccccccurrissannnnns 45

What Is JSON Web ToKen (JWT)? ... sessssese e ssssesssssnens 45

1. How Do We Create a New DB and User in PostgreSQL?ccccvverevevveriernens 49

2. How Do We Create a New Project with Spring Initializr?c.ccoevvvrierenne. 50
3. How Do We Configure the application.properties File with Information

About the DB Used, the JPA/JWT, and Server Configuration?..........c.cccccenen... 56

4. How Do We Generate a JWTsecret Value for Our Project?.........cccovrvrerenicnenn. 57

viii

TABLE OF CONTENTS

5. How Do We Create New APIS for Our Project?ccccvvvvererensensessersesessenenes 57
6. How Do We Create New User and Role Models for Our Project? 58
7. How Do We Create New Role Java Classes for Our Project?ccccccvveenene. 58
8. How Do We Create New Repository Java Classes for Our Project? 62
9. How Do We Create a JWT Authentication Filter for Our Project?c..... 68
JWT Authentication FIRErcccvvcricnnicnrcsersse e 70
10. How Do We Create the Spring REST APIs Controller?ccvevverevenseriernens 77
11. How t0 TeSt OUF ProjJECE?2.......ccvverevirrerrere s sersere e s sesse s e sse e ssesessessesaens 85
QUMM e s b e e e nenrn 89
Chapter 5: Securing 0Auth2 Authentication FIowWccuscenrensssnnnnns 91
RESTful APIS and QAUh 2.0cccvvrirnnririnesesesesesese s ssssssesssenees 91
OAULh2 INTrOUCTION ... e 92
OAULN2 SECUILY .evvveerreerreerrsess e e 94
1. How to Integrate OAuth2 with Spring Security for RESTful APIS?.........ccceeuene 96
2. What IS OAULN2 LOGIN?covecerrererrenesseressesssssssessessessssessessesssssssessesssssssensessens 100
3. How to Develop an OAuth2 and Spring Security Project?..........cccccovvcvurenne. 101
4. What Are the Needed OAuth2 and Spring Security Dependencies?.............. 103
5. How to Create the Spring Security SpringSecurityConfiguration
Java Class t0 Use QAULN2?couceevevnenerne s 108
6. How to Configure Google to Be Accessed via OAuth 2.0 Login?ccceeuene 110
7. How to Generate OAuth2 IDs and Secret Keys for Google?.........ccoevverreriernens 110
SUMMAIY..c..citiiiire e s a e s b e s R r e e e nne s 117
1T - 119

ix

About the Author

Massimo Nardone has more than 29 years of
experience in information and cybersecurity
for IT/OT/I0T/I1oT, web/mobile development,
cloud, and IT architecture. His true IT passions
are security and Android. He holds an MSc

in computing science from the University of
Salerno, Italy. Throughout his working career,
he has held various positions, starting as a
programming developer and then security
teacher, PCI QSA, auditor, assessor, lead IT/
OT/SCADA/cloud architect, CISO, BISO,
executive, program director, OT/IoT/IloT

security competence leader, VP of OT security, etc. In his last working
engagement, he worked as a seasoned cyber and information security
executive, CISO, and OT, IoT, and IloT security competence leader, helping
many clients to develop and implement cyber, information, OT, and IoT
security activities. He is currently working as Vice President of OT security
for SSH Communications Security. He is a author of numerous Apress
books, including Secure RESTful APIs, Cybersecurity Threats & Attacks

in Gaming Industry, Pro Spring Security 6, Pro JPA 2 in Java EE 8, and Pro
Android Games, and has reviewed more than 75 titles.

About the Technical Reviewer

Naga Santhosh Reddy Vootukuri is a senior
software engineering manager at Microsoft,
working within the Cloud Computing + Al
(C+AI) organization. With over 17 years of
experience spanning across three countries
(India, China, and the USA), Naga has
developed a rich and varied technical

¢ background. His expertise lies in cloud
computing, artificial intelligence, distributed
systems, and microservices.

At Microsoft, Naga leads the Azure SQL Database team, focusing on
optimizing SQL deployment processes to enhance the efficiency and
scalability of services for millions of databases globally. He is responsible
for the entire infrastructure of the Azure SQL deployment space and
has been instrumental in the development of Master Data Services, a
master data management solution by Microsoft. This project earned him
recognition for delivering impactful solutions to complex data challenges.

Naga has authored and published numerous research articles in
peer-reviewed and indexed journals. He is a senior member of IEEE and
contributes technical articles as a Core MVB member at DZone, engaging
with millions of active readers. He also serves as an editorial board
member for a highly reputed science journal (SCI), where he reviews
research articles on cloud computing and Al.

In addition to his professional roles, Naga is deeply involved in the
tech community as a speaker, book reviewer for Apress, and contributor
to platforms like DZone and the Microsoft Tech Community. He recently

xiii

ABOUT THE TECHNICAL REVIEWER

served as an IEEE Al Summit committee chair and lightning talk chair
and selected some of the best lightning talks. He also delivered Al-related
workshops and received an Al innovator award from Washington Senator
Lisa Wellman. He also served as a judge for the Globee Awards, Fabric
and Al Learning Hackathon, and Cosmos DB and Al Hackathon on
devpost, which further showcased his expertise and commitment to the
advancement of technology.

Xiv

Acknowledgments

Many thanks go to my wonderful children Luna, Leo and Neve for your
continuos support You are and will be always the most beautiful reason of
my life.

I want to thank my beloved late father Giuseppe and my mother Maria,
who always supported me and loved me so much. I will love and miss both
of you forever.

My beloved brothers, Roberto and Mario, for your endless love and for
being the best brothers in the world. Brunaldo and Kaisa for bringing joy
and happiness to Luna and Leo.

Thanks a lot to Melissa Duffy for giving me the opportunity to work as
writer on this book, to Sowmya Thodur for doing such a great job during
the editorial process and supporting me all the time, and of course Naga
Santhosh Reddy Vookuri the technical reviewer of this book, for helping
me to make a better book.

—Massimo

Introduction

RESTful APIs are a common method for enabling communication between
different software systems. As these Application Programming Interfaces
(APIs) often handle sensitive data and critical operations, securing them

is paramount. This section covers key strategies and best practices for
securing RESTful APIs.

This book is for RESTful APIs beginner developers who want to learn
about applying security when developing REST APIs applications. It will be
a practical pocket guide and help developers understand how to develop
and deploy security when dealing with RESTful APIs for authentication
and authorization, data protection, threat detection and prevention, etc.

This book is a tutorial and reference that guides you through the
implementation of the security features for a Java web application by
presenting consistent solutions to security issues with RESTful APIs.

This book explores a comprehensive set of functionalities to
implement industry-standard authentication and authorization
mechanisms for Java applications, providing examples on how to develop
customized RESTful APIs secure apps dealing with data validation, JSON
Web Token (JWT), and Open Authorization 2.0 (OAuth 2.0).

Prerequisites

The examples in this book are all built with Java 17+ and Maven 3.9.9.
Spring Security 6 was the version used throughout the book. Tomcat Web
Server v11 was used for the different web applications in the book, mainly
through its Maven plugin, and the laptop used was a ThinkPad Yoga 360
with 8GB of RAM. All the projects were developed using the Intelli] IDEA
Ultimate 2024.2.4.

xvii

INTRODUCTION

You are free to use your own tools and operating system. Because
everything is Java based, you should be able to compile your programs on
any platform without problems.

Downloading the Code

The code for the examples given in this book is available via the Download
Source Code button located at https://github.com/Apress/Secure-
RESTful-APIs.

xviii

https://github.com/Apress/Secure-RESTful-APIs
https://github.com/Apress/Secure-RESTful-APIs

CHAPTER 1

Introduction to
RESTful APls

This chapter will explain what RESTful APIs are.

REST, which stands for Representational State Transfer, is an
architectural style for designing networked applications. REST has become
the predominant way of designing APIs (Application Programming
Interfaces) for web-based applications.

What Are the Major Differences Between
REST and SOAP?

SOAP (Simple Object Access Protocol) is a protocol for exchanging
structured information in the implementation of web services. It uses XML
as its message format and relies on application layer protocols like HTTP
or SMTP for message negotiation and transmission. SOAP is designed
to enable communication between applications running on different
operating systems, with different technologies, and written in different
programming languages.

REST (Representational State Transfer) and SOAP (Simple Object
Access Protocol) are two different architectural styles for designing APIs.

© Massimo Nardone 2025 1
M. Nardone, Secure RESTful APIs, Apress Pocket Guides,
https://doi.org/10.1007/979-8-8688-1285-9_1

https://doi.org/10.1007/979-8-8688-1285-9_1#DOI

CHAPTER 1 INTRODUCTION TO RESTFUL APIS

REST is more flexible and simpler, making it the preferred choice for
most modern applications. SOAP, with its built-in security and transaction
handling, remains valuable for enterprise-grade and mission-critical
applications.

Table 1-1 shows the major differences between REST and SOAP.

Table 1-1. Major differences between REST and SOAP

Feature REST SOAP

Protocol HTTP HTTP, SMTP, TCP

Data format JSON, XML XML

Complexity Simple Complex

Scalability Highly scalable Less scalable
Performance Faster Slower

Use case Web, mobile APIs Enterprise applications

How to Combine REST and API to Create
RESTful API?

An API (Application Programming Interface) is a set of rules and protocols
that enable different software applications to communicate and interact
with each other. It serves as a bridge between systems, allowing them to
exchange data or functionality without needing to understand the details
of each other’s implementation.

REST APIs provide a structured and standardized way for different
software applications to communicate over the Internet. They’'ve become
the backbone of modern web and mobile applications, enabling seamless
integration and interaction between various services and systems.

REST APIs allow different software applications to communicate and
interact with each other over the Internet using standard HTTP methods.

CHAPTER 1 INTRODUCTION TO RESTFUL APIS

A RESTful AP], therefore, refers to an API that is designed and
implemented in compliance with the principles of REST.

Both REST and RESTful APIs are widely used for building modern web
applications and services. While the terms are often used interchangeably,
a RESTful API ensures full adherence to REST principles, making it a more
precise implementation of the REST architecture.

HATEOAS stands for Hypermedia As The Engine Of Application State.

It is a constraint of the REST (Representational State Transfer)
architectural style that enables dynamic and self-descriptive interactions
in a RESTful API. With HATEOAS, clients interact with a RESTful API
entirely through hyperlinks provided dynamically by the server in the
responses, rather than hardcoding the API’s paths and operations.

Table 1-2 describes the major differences between REST API and
RESTful API.

Table 1-2. Differences between REST API and RESTful API

Aspect REST API RESTful API

Definition Any API that uses REST principles Strictly adheres to all REST principles
Flexibility More flexible in design approach Fully compliant with REST constraints
HATEOAS May not include HATEOAS Includes HATEQAS for navigation

What Is JSON?

JSON (JavaScript Object Notation) is a lightweight, text-based data format
used for representing structured data. It is easy to read and write for
humans and easy to parse and generate for machines, making it a popular
choice for data exchange in web applications, APIs, and configuration files.

CHAPTER 1 INTRODUCTION TO RESTFUL APIS

Here are the key features of JSON:
1. Lightweight: Minimal syntax and simple structure.

2. Language Independent: While derived from
JavaScript, JSON is supported by most programming
languages.

3. Human-Readable: Designed to be easily read and
understood by humans.

4. Versatile: Can represent complex nested data
structures like objects and arrays.

What Are the RESTful APl Key Concepts?

¢« Resource-Oriented:

o InREST, every piece of data or functionality is
treated as a resource, identified by a unique URI
(Uniform Resource Identifier).

o Examples are /users, /products, and /orders.
¢ Client-Server Architecture:

o REST separates the client (the application making
the request) from the server (the application
fulfilling the request), which allows them to evolve
independently.

¢ Stateless Communication:

o Each APIrequest contains all necessary
information (authentication, state, etc.).

« The server does not store session information
about clients, ensuring scalability.

CHAPTER 1 INTRODUCTION TO RESTFUL APIS

e HTTP Methods/Verbs: RESTful APIs rely on standard
HTTP methods to perform operations on resources:

GET
POST
PUT
DELETE
PATCH

¢ Representation Formats:

RESTful APIs commonly use JSON (JavaScript
Object Notation) and XML to represent data.

JSON is preferred due to its simplicity and
compatibility with modern web technologies.

¢ Uniform Interface:

REST enforces a standardized interface, ensuring
consistent interaction between clients and servers.

What Are the HTTP Methods or Verhs?

In RESTful APIs, HTTP methods (also known as verbs) define the type of

operation to perform on a given resource.

HTTP methods or verbs are fundamental to the design and operation

of RESTful APIs. They provide a standardized way to perform actions on

resources, ensuring clear communication between clients (e.g., web apps,

mobile apps) and servers.

Each method plays a critical role in defining the behavior of a RESTful

API and how it interacts with resources.

CHAPTER 1 INTRODUCTION TO RESTFUL APIS

Here’s a description of the commonly used HTTP methods:

e GET: Make a read-only request to view either a single
or list of multiple resources.

e POST: Create a new resource based on the payload
given in the body of the request.

e DELETE: Destroy the given resource based on the ID
provided.

o PUT: Update the entire fields of the resource based on
the given body of the request or create a new one if it
does not already exist.

o PATCH: Partially update a resource.

What Are the HTTP Request Status Codes?

When we receive an HTTP request in the basic RESTful format, the server
will return an HTTP status code and any optional JSON payloads.
The most common HTTP status codes are listed in Table 1-3.

CHAPTER 1 INTRODUCTION TO RESTFUL APIS

Table 1-3. The most common HTTP status codes

Status code Meaning

200 OK Request is successful.

301 Moved Permanently Page has been moved.

401 Unauthorized Server requires authentication.
403 Forbidden Client authenticated but no permissions to view resource.
404 Not Found Page not found.

500 Internal Server Error Server-side error.

503 Server Unavailable Server-side error.

Problem

Why use RESTful APIs?

Solution

RESTful APIs are used generally for the following reasons:
1. Platform Independence:

e RESTful APIs can be consumed by any client (web,
mobile, IoT) capable of making HTTP requests.

2. Scalability:

o Statelessness and simplicity make RESTful APIs
ideal for handling a large number of requests.

3. Ease of Integration:

o They enable seamless communication between
different systems and technologies.

CHAPTER 1 INTRODUCTION TO RESTFUL APIS
4. Flexibility:

¢ Clients can request only the data they need,
optimizing bandwidth and improving performance.

5. Widely Adopted:

e Supported by most programming languages and
frameworks, making them a go-to choice for API
development.

Problem

What are the RESTful APIs Core Components?

Solution

Core Components of RESTful APIs include the following:
1. Endpoints:

o URLs that represent resources, e.g., https://api.
example.com/users.

2. HTTP Methods:
o Specify the action to perform on a resource.
3. Headers:

e Provide metadata for requests and responses (e.g.,
authentication tokens, content types).

4. Request Body:

e Contains data for POST, PUT, or PATCH requests
(usually in JSON or XML format).

https://api.example.com/users
https://api.example.com/users

CHAPTER 1 INTRODUCTION TO RESTFUL APIS

5. Response Body:

o Contains the server’s response, often including data
or status messages.

6. Status Codes:

¢ HTTP status codes inform clients of the result of
their request (as explained previously).

Problem

What are the most common advantages and disadvantages of
RESTful APIs?

Solution

Here are the most important advantages of RESTful APIs:

e Scalability: RESTful architectures are scalable due to

their stateless nature.

o Flexibility: Clients and servers can evolve
independently without affecting each other as long as
the API contract remains consistent.

e Wide Adoption: REST is widely adopted and
understood, making it easier for developers to
work with.

o Caching: REST APIs can take advantage of HTTP

caching mechanisms to improve performance.

o Language and Platform Independence: Since REST
APIs use standard HTTP methods and formats, they
can be accessed from various programming languages
and platforms.

CHAPTER 1 INTRODUCTION TO RESTFUL APIS

While REST APIs have numerous advantages, there are also some
disadvantages and limitations to consider:

e Lack of Standardization: Despite being a widely
adopted architectural style, REST doesn’t provide strict
guidelines on how to design APIs. This can lead to
inconsistencies in API design and make it challenging
to ensure uniformity across different APIs.

e Overfetching and Underfetching: REST APIs often
return fixed data structures, which can lead to
overfetching (receiving more data than needed) or
underfetching (receiving less data than needed) of
information. This can result in wasted bandwidth or
additional requests.

e Limited Support for Real-Time Communication:
REST APIs are typically request-response-based and
may not be well-suited for real-time communication.
Implementing features like instant messaging or live
updates can be complex and might require additional
technologies.

¢ No Built-In State Management: REST APIs are
stateless, which means the server doesn’t store
client state. While this simplifies server design, it can
lead to challenges when managing session-related
information.

o Lack of Rich Semantics: REST APIs primarily rely on
HTTP methods and status codes, which may not always
convey rich semantics about the underlying operations.
This can lead to ambiguity in understanding the
purpose of certain API endpoints.

10

CHAPTER 1 INTRODUCTION TO RESTFUL APIS

e Performance Overhead: REST APIs may involve
additional data parsing and serialization steps due to
their reliance on formats like JSON or XML. This can
introduce performance overhead, especially in high-
frequency scenarios.

e Multiple Requests for Complex Operations: Complex
operations often require multiple requests to the server,
leading to additional network overhead and latency.
This can be a concern for mobile applications or in
situations with limited bandwidth.

o Lack of Flexibility in Versioning: Making changes to
a REST API while maintaining backward compatibility
can be challenging. Different versions of the API
might need to be managed, which can complicate the
development and deployment process.

e Security Considerations: While REST APIs can
be secured using mechanisms like HTTPS and
authentication, designing a secure REST API requires
careful consideration of authorization, token
management, and protection against common security
vulnerabilities.

« Limited Discoverability: Discovering the available
endpoints and their functionalities in a REST API might
require external documentation, as there’s no built-in
mechanism for exposing the API structure to clients.

Finally, here is a simple example of a simple RESTful API for managing
a list of cars:

o GET /cars: Retrieve a list of all cars.

e GET /cars/{id}: Retrieve details of a specific car.

11

CHAPTER 1 INTRODUCTION TO RESTFUL APIS

e POST /cars: Create a new car record by sending car data.
e PUT /cars/{id}: Update details of a specific car.
o DELETE /cars/{id}: Delete a specific car.
Here is how a request (GET car information) HTTP looks like:
GET https://api.example.com/cars/123

Headers:

Authorization: Bearer <token>

Response JSON:
{
car_id: 123,
name": "Ferrari",
response_id: 1
}
A RESTful API flow example is shown in Figure 1-1.
CLIENT SERVER
I
GET /cars — . —
POST
DELETE /cars/123
il /cars/123/resp...

PATCH

car_id: 123,
name": "Ferrari",
response_id: 1

1
s

Figure 1-1. RESTful example process flow

12

https://api.example.com/cars/123

CHAPTER 1 INTRODUCTION TO RESTFUL APIS

Summary

RESTful APIs provide a standardized, efficient, and flexible approach
to building modern web services. They are designed to simplify data
exchange between clients and servers while supporting scalability
and maintainability, making them a cornerstone of modern software
development.

In this chapter, we first introduced REST, APIs, SOAP, JSON, and how
to combine some of these to get RESTful APIs. We explained the REST API
key concepts, the advantages, disadvantages, and limitations to consider
for REST APIs and finally provided a simple example of a RESTful API.

13

CHAPTER 2

Key Security
Concerns and Risks
for RESTful APlIs

This chapter will explain what the most common key security concerns
and risks for RESTful APIs are.

RESTful APIs are a backbone of modern web and mobile applications,
enabling seamless communication between clients and servers. However,
as APIs expose sensitive data and critical application functionality, they
become prime targets for attackers. Understanding the key security
concerns and risks is essential to building secure and reliable RESTful APIs.

What Are the RESTful APl Key
Security Concerns?

Here are key security concerns for RESTful APIs:
1. Authentication and Authorization:

« Ensuring that only legitimate users or systems can
access API resources.

¢ Risks include weak authentication mechanisms
and unauthorized access to sensitive data.

© Massimo Nardone 2025 15
M. Nardone, Secure RESTful APIs, Apress Pocket Guides,
https://doi.org/10.1007/979-8-8688-1285-9_2

https://doi.org/10.1007/979-8-8688-1285-9_2#DOI

CHAPTER 2 KEY SECURITY CONCERNS AND RISKS FOR RESTFUL APIS

2. Data Exposure:

e APIs often transmit sensitive data such as personal
information or financial details.

o Improper handling or lack of encryption can lead to
data leaks.

3. Lack of Input Validation:

e APIs may accept malicious or improperly formatted
input, leading to injection attacks like SQL injection
or XML external entities (XXEs).

4. Rate Limiting and Throttling:

o Without rate limiting, APIs can be overwhelmed
by excessive requests (denial-of-service (DoS)/
distributed DoS (DDoS) attacks).

e Overexposed APIs can unintentionally allow data
scraping.

5. Data Integrity:

o Ensuring that data sent and received by the API is
not tampered with during transmission.

¢ Risks include man-in-the-middle (MITM) attacks.
6. Improper Error Handling:

e Revealing sensitive system information in error
messages can give attackers insight into the API’s
structure.

7. Session Management:

o Weak session handling mechanisms can lead to
session hijacking or fixation attacks.

16

10.

CHAPTER 2 KEY SECURITY CONCERNS AND RISKS FOR RESTFUL APIS

CORS (Cross-Origin Resource Sharing)
Misconfiguration:

e Improperly configured CORS policies can allow
malicious sites to access API data.

Token and Credential Exposure:

e Storing API keys, tokens, or credentials insecurely
can lead to unauthorized access.

API Versioning and Deprecation Risks:

e Unsecured older versions of APIs remain
vulnerable to attacks if not deprecated or
maintained properly.

What Are the Most Common Sources
of Risk?

In general, the most common sources of risk are

Poor Authentication: Weak or missing authentication
mechanisms allow unauthorized access.

Insufficient Input Validation: Lack of validation leads
to injection attacks and data manipulation.

Excessive Data Exposure: APIs that return more
information than necessary can inadvertently leak

sensitive data.

Rate Limiting Neglect: APIs without rate limiting are
vulnerable to denial-of-service (DoS) attacks.

Outdated Dependencies: Using insecure libraries or
frameworks introduces vulnerabilities.

17

CHAPTER 2 KEY SECURITY CONCERNS AND RISKS FOR RESTFUL APIS

What Are the Common Risks Associated
with RESTful APIs?

1. Lack of Authentication and Authorization

¢ Risk: APIs without proper authentication and
authorization controls may allow unauthorized
users to access sensitive data or perform restricted
actions.

o Example: A public-facing API endpoint without
user authentication might expose user data or allow
account hijacking.

2. Insufficient Encryption

« Risk: Failure to encrypt data in transit (e.g.,
over HTTP instead of HTTPS) exposes sensitive
information to interception (man-in-the-middle
attacks).

« Example: Sending sensitive data like API keys or
credentials over an unencrypted channel.

3. Exposure of Sensitive Data

o Risk: APIs may inadvertently expose sensitive
information in responses, such as passwords,
personal data, or API keys.

« Example: Error messages returning stack traces or
database query information.

4. Injection Attacks

o Risk: APIs that fail to validate or sanitize user inputs
are vulnerable to injection attacks, such as SQL
injection or script injection.

18

CHAPTER 2 KEY SECURITY CONCERNS AND RISKS FOR RESTFUL APIS

Example: An attacker injects malicious code
through query parameters or payloads.

Rate Limiting and DDoS Vulnerabilities

Risk: Lack of rate limiting allows attackers to
overload an API with requests, leading to denial-of-
service attacks or resource exhaustion.

Example: An attacker sends thousands of requests
per second, causing API unavailability.

Broken Object-Level Authorization

Risk: APIs that fail to enforce proper access control
policies at the object level may allow users to access
data they do not own.

Example: An attacker guesses object identifiers
(e.g., userld) and accesses another user’s data.

API Parameter Tampering

Risk: Manipulation of API parameters, such as
query strings, headers, or cookies, to exploit
vulnerabilities.

Example: Changing a userRole parameter to gain
admin privileges.

Misconfigured CORS (Cross-Origin Resource

Sharing)

Risk: APIs with overly permissive CORS
configurations allow unauthorized domains to

dCcCess resources.

Example: An attacker’s malicious domain accesses
sensitive data from an APIL.

19

CHAPTER 2 KEY SECURITY CONCERNS AND RISKS FOR RESTFUL APIS

9. Insufficient Logging and Monitoring

o Risk: Failure to log and monitor API activities leads
to delayed detection of malicious activities.

o Example: Missing alerts for unusual activity
patterns, like brute-force login attempts.

10. Lack of Input Validation

o Risk: APIs that do not validate input can be
exploited for buffer overflows, path traversal, or
other vulnerabilities.

o Example: An attacker uploads malicious files by
bypassing file validation.

11. Insecure API Key Management

o Risk: Hardcoding API keys or failing to rotate them
periodically can lead to unauthorized use.

o Example: An attacker gains access to an API key
through public repositories or shared credentials.

12. Third-Party Dependencies

o Risk: Using insecure third-party APIs or libraries in
the application stack can introduce vulnerabilities.

o Example: A third-party API is compromised and
serves malicious payloads.

20

CHAPTER 2 KEY SECURITY CONCERNS AND RISKS FOR RESTFUL APIS

What Are the Most Common RESTful APIs
Risk Mitigation Strategies?

RESTful APIs risk mitigation strategies include

1. Authentication and Authorization: Use secure
protocols like OAuth2 and enforce role-based access
control (RBAC).

2. Encryption: Implement HTTPS and encrypt
sensitive data in transit.

3. Data Minimization: Only return necessary data in
APIresponses.

4. Input Validation: Validate and sanitize all user
inputs to prevent injection attacks.

5. Rate Limiting: Implement rate limiting and
throttling to prevent abuse.

6. Object-Level Security: Ensure strict access control
at the object level.

7. CORS Configuration: Limit allowed origins and
enforce strict CORS policies.

8. Secure API Key Management: Rotate keys
periodically and avoid hardcoding them.

9. Comprehensive Logging: Monitor API traffic and
set up alerts for unusual activities.

10. Security Testing: Conduct regular vulnerability
assessments and penetration testing.

11. Error Handling: Avoid exposing detailed error
messages that could provide attackers with insights
into your API structure or vulnerabilities.

21

CHAPTER 2 KEY SECURITY CONCERNS AND RISKS FOR RESTFUL APIS

12. API Gateway Security: Use API gateway to
centralize security controls like authentication,
rate limiting, and request filtering. Implement Web
Application Firewalls (WAF) rules to detect and
block malicious traffic.

13. Versioning and Deprecation Policy: Outlines how
an organization manages changes to its software,

APIs, or services over time.

14. Schema Validation: Define and enforce a strict
schema for request payloads.

15. Security Headers: Use headers like strict-transport-
security and x-frame-options to enhance security.

By addressing these risks proactively, organizations can significantly
enhance the security of their RESTful APIs, safeguarding sensitive data and
maintaining trust with users and partners.

Summary

RESTful APIs are vital for modern applications but come with inherent
security challenges. Addressing these concerns through robust security
measures, best practices, and continuous monitoring is essential to protect
both the API and its consumers from potential threats. By understanding
and mitigating these risks, developers can build APIs that are not only
functional but also resilient against evolving cyber threats.

In this chapter, we introduced what the most common key security
concerns and risks for RESTful APIs are and how to mitigate them.

22

CHAPTER 3

Data Protection

and Validation
for RESTful APls

This chapter will explain data protection and validation for RESTful APIs.

What Is Data Protection?

Data protection refers to the practices, policies, and technologies
implemented to safeguard sensitive, personal, and organizational data
from unauthorized access, misuse, theft, or corruption. It ensures the
confidentiality, integrity, and availability of data throughout its life cycle,
whether in transit, at rest, or in use.

1. What Are the Main Key Objectives of
Data Protection?

The key objectives of data protection are

1. Confidentiality: Ensures that only authorized
individuals or systems can access sensitive

information

© Massimo Nardone 2025
M. Nardone, Secure RESTful APIs, Apress Pocket Guides,
https://doi.org/10.1007/979-8-8688-1285-9_3

https://doi.org/10.1007/979-8-8688-1285-9_3#DOI

CHAPTER 3 DATA PROTECTION AND VALIDATION FOR RESTFUL APIS

2. Integrity: Maintains the accuracy and completeness
of data, preventing unauthorized modification

3. Availability: Ensures that data is accessible to
authorized users whenever it is needed

2. Why Is Data Protection Important?

Data protection is crucial for several reasons, including legal, financial,
ethical, and security considerations:

o Compliance: Helps organizations adhere to legal
regulations like GDPR, CCPA, and HIPAA

e Trust: Builds trust with customers by safeguarding

their personal information

e Security: Protects against cyber threats like data
breaches, ransomware, and insider threats

o Business Continuity: Ensures uninterrupted
operations by protecting critical data from loss
or damage

3. What Are the Most Common Data
Protection Practices?

Implementing robust data protection measures ensures the security,
confidentiality, and integrity of sensitive information.

Here are the common practices organizations and individuals can
adopt to protect data:

1. Encryption: Securing data by converting it into a
coded format that is unreadable without a key

24

CHAPTER 3 DATA PROTECTION AND VALIDATION FOR RESTFUL APIS
2. Access Controls: Restricting access to data based on

roles, permissions, and authentication

3. Data Masking: Hiding sensitive data by replacing it
with fictitious data while maintaining usability

4. Backup and Recovery: Regularly copying data
to ensure it can be restored in case of loss or

corruption

5. Data Minimization: Collecting and retaining only
the data necessary for specific purposes

6. Auditing and Monitoring: Continuously monitoring
data access and usage to detect anomalies

These practices, when implemented effectively, form a comprehensive
strategy for protecting sensitive data against threats, ensuring compliance,
and maintaining trust. Data protection is an ongoing process that requires
continuous monitoring, updates, and education.

4. What Are the Most Important Types
of Data Protection?

Data protection encompasses a range of techniques and strategies to
ensure the security, integrity, and privacy of sensitive data.
Here are the most important types of data protection:

1. Physical Data Protection:

e Securing physical access to servers, storage devices,
and backups

2. Digital Data Protection:

e Using firewalls, antivirus software, and encryption
to protect data in digital systems

25

CHAPTER 3 DATA PROTECTION AND VALIDATION FOR RESTFUL APIS

3. Cloud Data Protection:

¢ Implementing security measures for data stored in
cloud environments, such as access controls and
encryption

4. Compliance-Based Protection:

e Meeting the requirements of data protection laws
and standards

Each type of data protection plays a unique role in securing sensitive
information. A comprehensive data protection strategy often involves
combining these types to address different threats and vulnerabilities,
ensuring robust security across all aspects of data handling and storage.

RESTful APl Data Security

Data security for RESTful APIs involves implementing measures to protect
sensitive information exchanged between clients and servers. APIs are
vulnerable to threats like data breaches, interception, unauthorized access,
and injection attacks, making robust security practices essential.

Securing RESTful APIs is essential for safeguarding sensitive data and
maintaining trust. By following these practices, developers can mitigate
risks, ensure data privacy, and protect against unauthorized access or
attacks.

5. What Are the Key Principles for RESTful API
Data Security?

Securing RESTful APIs is critical to protect sensitive data, ensure user

privacy, and maintain the integrity of communication.

26

CHAPTER 3 DATA PROTECTION AND VALIDATION FOR RESTFUL APIS

The most important principles for RESTful API Data Security are

1.

Authentication: Verifying the identity of users or
systems accessing the API

Authorization: Ensuring users or systems can only
access resources they are permitted to

Data Integrity: Preventing unauthorized data
modification during transmission

Confidentiality: Securing sensitive information

from unauthorized access

Non-repudiation: Providing evidence of actions
performed within the API system

Let’s elaborate the key principles for RESTful API Data Security:

1.

2.

Use HTTPS

o Purpose: Encrypts data in transit to prevent
interception.

¢ Implementation:

o Always enforce HTTPS to secure
communication between clients and servers.

o Use certificates from trusted Certificate
Authorities (CAs).

Authentication

o Purpose: Verifies the identity of users accessing
the APIL.

e Methods:
¢ Token-Based Authentication:

¢ Use JSON Web Token (JWT) or OAuth 2.0
tokens for stateless authentication.

27

CHAPTER 3

DATA PROTECTION AND VALIDATION FOR RESTFUL APIS

o APIKeys:

e Assign unique keys to each client for
identification.

¢ Multi-factor Authentication (MFA):

e Add an extra layer of security for
sensitive APIs.

3. Authorization

4.

28

Purpose: Ensures users have appropriate

permissions to access resources.
Best Practices:

e Userole-based access control (RBAC) or
attribute-based access control (ABAC).

o Enforce least privilege access principles.

Input Validation and Sanitization

Purpose: Prevents injection attacks like SQL
injection or XSS.

Best Practices:

e Validate all user inputs against predefined
schemas.

o Sanitize inputs to remove potentially
malicious code.

e Use libraries like OWASP’s ESAPI for secure
input handling.

CHAPTER 3 DATA PROTECTION AND VALIDATION FOR RESTFUL APIS

5. Rate Limiting and Throttling

e Purpose: Protects APIs from abuse, such as DDoS

attacks.

o Implementation:

Set limits on the number of requests per client/
IP within a specified time frame.

Use tools like API gateways or rate-limiting
middleware.

6. Secure Data Storage

o Purpose: Protects sensitive data at rest.

« Best Practices:

Encrypt sensitive data using algorithms like
AES-256.

Avoid storing sensitive information in log files
or plain text.

Implement database security measures, such as
access restrictions.

7. Token Expiration and Revocation

o Purpose: Reduces the risk of token misuse.

+« Best Practices:

Use short-lived tokens to minimize the impact
of a stolen token.

Provide refresh tokens for reauthentication.

Implement token revocation mechanisms to

invalidate compromised tokens.

29

CHAPTER 3

30

DATA PROTECTION AND VALIDATION FOR RESTFUL APIS

8. Error Handling and Logging

Purpose: Prevents leakage of sensitive information
through errors.

Best Practices:

e Avoid detailed error messages that expose
server details.

o Use generic error messages (e.g.,
“Unauthorized” or “Bad Request”).

e Log errors securely for monitoring and
debugging purposes.

9. Content Security

Purpose: Prevents attacks like JSON hijacking or
XML external entity (XXE) attacks.

Best Practices:

e Use appropriate content types and headers
(e.g., Content-Type: application/json).

o Disable XML parsing if not needed or secure it
against XXE attacks.

10. API Gateway and Firewall

Purpose: Acts as an intermediary to enhance
security.

Implementation:

o Use API gateways for request filtering, rate
limiting, and authentication.

« Employ Web Application Firewalls (WAF) to
block malicious traffic.

CHAPTER 3 DATA PROTECTION AND VALIDATION FOR RESTFUL APIS

11. Secure Cross-Origin Resource Sharing (CORS)

o Purpose: Manages how resources are shared
between different origins.

o BestPractices:
o Restrict CORS policies to trusted origins only.

e Use appropriate HTTP methods in CORS
headers (e.g., GET, POST).

12. Security Headers
o Purpose: Adds additional layers of protection.
o Examples:

« Content Security Policy (CSP): Mitigates XSS
attacks.

¢ X-Frame-Options: Prevents clickjacking.

e Strict-Transport-Security (HSTS): Enforces
HTTPS usage.

13. Regular Security Audits and Updates
o Purpose: Identifies and mitigates vulnerabilities.
¢ Best Practices:

e Conduct penetration testing and vulnerability
assessments regularly.

e Keep API dependencies and libraries up
to date.

31

CHAPTER 3 DATA PROTECTION AND VALIDATION FOR RESTFUL APIS

14. Data Minimization
o Purpose: Reduces risk by limiting exposed data.
¢ Best Practices:

e Only return the necessary data in API responses
(e.g., avoid overfetching).

e Mask or anonymize sensitive data before
sharing.

15. Use OAuth 2.0 for Authorization

e Purpose: Provides a robust framework for access
delegation.

o Features:

e Supports token-based authentication for

secure access.

o Integrates with identity providers like Google,
GitHub, or Okta.

16. Logging and Monitoring

¢ Purpose: Detects and responds to suspicious
activities.

¢ Best Practices:
e Logall APIrequests and responses securely.
e Monitor API usage patterns for anomalies.
17. Secure API Documentation

o Purpose: Prevents unintentional exposure of
sensitive details.

32

CHAPTER 3 DATA PROTECTION AND VALIDATION FOR RESTFUL APIS

« Best Practices:

o Limit access to API documentation to
authenticated users.

e Avoid publishing sensitive data like API keys or
credentials.

By following these principles, you can build robust and secure RESTful

APIs that protect sensitive data, ensure compliance with regulations, and

maintain user trust.

6. What Does RESTful API Security Look Like?

Here are practical examples showcasing different security techniques to
protect RESTful APIs:

1.

HTTPS Implementation
Ensure all API traffic is encrypted.

Example with Spring Boot:

server:
ssl:
key-store: classpath:keystore.jks
key-store-password: password
key-alias: tomcat
enabled: true

e This config enforces HTTPS by providing an SSL
certificate (keystore.jks).

33

CHAPTER 3 DATA PROTECTION AND VALIDATION FOR RESTFUL APIS

2. Authentication with JWT
Use JSON Web Token for stateless authentication.
Steps:
1. Login Endpoint: Generate a JWT upon successful login.
2. Verify Token: Validate the token on each request.
Example Login Endpoint (Spring Boot):

@PostMapping("/login™)
public ResponseEntity<?> authenticateUser (@RequestBody
LoginRequest loginRequest) {
String token = jwtUtils.generateToken(loginRequest.
getUsername());
return ResponseEntity.ok(new JwtResponse(token));

}

Securing Endpoints (Java Example):

@EnableWebSecurity
public class SecurityConfig extends
WebSecurityConfigurerAdapter {
@0verride
protected void configure(HttpSecurity http) throws
Exception {
http.csrf().disable()
.authorizeRequests()
.antMatchers("/login").permitAll()
.anyRequest().authenticated()
.and()
.addFilter(new JwtAuthenticationFilter
(authenticationManager()));

34

CHAPTER 3 DATA PROTECTION AND VALIDATION FOR RESTFUL APIS

3. Role-Based Access Control
Restrict access to endpoints based on user roles.

Java Example:

@PreAuthorize("hasRole("ADMIN')")

@GetMapping("/admin™)

public String adminOnlyEndpoint() {
return "Admin Access Granted!";

}

e Only users with the ADMIN role can access this
endpoint.

4. Input Validation and Sanitization
Prevent injection attacks by validating API inputs.

Java Example Using Hibernate Validator:

public class UserRequest {
@NotNull
@Size(min = 3, max = 20)
private String username;

@Email
private String email;

}

Validation in Controller Java Example:

@PostMapping("/register")
public ResponseEntity<?> registerUser(@valid
@RequestBody UserRequest userRequest) {

// Logic here

35

CHAPTER 3

5.

36

DATA PROTECTION AND VALIDATION FOR RESTFUL APIS

Rate Limiting with API Gateway
Limit the number of requests a client can make.

Example with Spring Boot:

@Bean
public Routelocator ratelLimitRoutes(RoutelLocatorBuilder
builder) {

return builder.routes()

.route("limit route", r -> r.path("/api/**")
filters(f -> f.requestRatelLimiter(c ->
c.setRatelimiter(redisRateLimiter())))
.uri("http://localhost:8080"))

.build();

OAuth 2.0 Authorization

Secure APIs using third-party identity providers
(e.g., Google, GitHub).

Java Example (Spring Security OAuth2):

@EnableWebSecurity
public class OAuth2SecurityConfig extends
WebSecurityConfigurerAdapter {
@verride
protected void configure(HttpSecurity http) throws
Exception {
http.oauth2Login()
.loginPage("/login")
.defaultSuccessURL("/home", true);

CHAPTER 3 DATA PROTECTION AND VALIDATION FOR RESTFUL APIS
Configuration for Google:

spring:
security:
oauth2:
client:
registration:
google:

client-id: your-google-client-id
client-secret: your-google-client-secret
redirect-uri: "{baseUrl}/login/oauth2/
code/google"

7. API Key Authentication
Restrict access using API keys.

Example with Middleware:

public class ApiKeyFilter extends OncePerRequestFilter {
@0verride
protected void doFilterInternal(HttpServlet
Request request, HttpServletResponse response,
FilterChain chain)
throws ServletException, IOException {
String apiKey = request.getHeader ("X-API-KEY");
if (!"valid-api-key".equals(apikey)) {
response.setStatus(HttpServletResponse.
SC_UNAUTHORIZED);
return;
}

chain.doFilter(request, response);

37

CHAPTER 3 DATA PROTECTION AND VALIDATION FOR RESTFUL APIS
Add Filter to Security Config:

@0verride
protected void configure(HttpSecurity http) throws
Exception {

http.addFilterBefore(new
ApiKeyFilter(),
UsernamePasswordAuthenticationFilter.class);

}

8. Content Security
Protect API responses against injection attacks.

Java Example:

@GetMapping("/user")

public ResponseEntity<?> getUser() {
HttpHeaders headers = new HttpHeaders();
headers.add("Content-Security-Policy",
"default-src 'self'");
return ResponseEntity.ok().headers(headers).
body("User Data");

9. Hiding Sensitive Information
Mask or exclude sensitive data in API responses.

Example with Jackson (Masking Sensitive Data):

@JsonProperty(access = JsonProperty.Access.WRITE ONLY)
private String password;

o The password will not be included in API
responses.

38

CHAPTER 3 DATA PROTECTION AND VALIDATION FOR RESTFUL APIS

10. Logging and Monitoring
Capture activity logs for security analysis.

Example Using SLF4]:

private static final Logger logger = LoggerFactory.
getLogger (UserController.class);

@GetMapping("/users")

public ResponseEntity<?> getUsers() {
logger.info("Fetching all users");
return ResponseEntity.ok(userService.
getAllUsers());

}

Implementing these examples ensures a comprehensive security
layer for your RESTful API. By combining HTTPS, authentication, rate
limiting, and input validation, you can protect sensitive data and prevent
unauthorized access effectively.

Why Do Data Validation for RESTful APIs
and How?

Data validation for RESTful APIs ensures that the data provided by the
client meets the API's expectations. Proper validation enhances security,
maintains data integrity, and provides clear error responses.

Data validation is generally performed for the following reasons:

e Preventinvalid data from entering your system.

e Protect against injection attacks and other
vulnerabilities.

39

CHAPTER 3

DATA PROTECTION AND VALIDATION FOR RESTFUL APIS

Ensure compliance with business rules and data
formats.

Enhance the user experience by providing meaningful

€Iror messages.

Problem

What are the most common types of data validation?

Solution

The most common types of data validation include

40

Data Type Validation

Verify the data matches expected types, e.g., strings,
integers, or Booleans.

Range Validation
Ensure numbers or dates fall within acceptable ranges.
Format Validation

Validate email addresses, phone numbers, and other
formatted fields using patterns or regular expressions
(REGEX).

Length Validation

Limit the size of strings or arrays to prevent
performance issues.

Custom Business Logic Validation

Apply rules specific to your application, e.g., checking if
a username is unique.

CHAPTER 3 DATA PROTECTION AND VALIDATION FOR RESTFUL APIS

7. How to Perform Data Validation in
RESTful APIs?

Here is how generally data validation is performed:

¢ Server-Side Validation

o Always validate data on the server to ensure
security, even if client-side validation is in place.

e Client-Side Validation (Optional)

e Provides a better user experience but should never
replace server-side validation.

Here is a full example of data validation in RESTful APIs.
Validation steps in Spring Boot (Java) include the following:

1. Add Validation Dependency:

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-validation
</artifactId>

</dependency>

2. Define a DTO with Validation Annotations:
import jakarta.validation.constraints.*;

public class UserRequest {
@NotNull
@Size(min = 3, max = 50)
private String username;

41

CHAPTER 3 DATA PROTECTION AND VALIDATION FOR RESTFUL APIS

42

@Email
private String email;

@Pattern(regexp = "~[0-9]{10}$", message = "Phone
number must be 10 digits")
private String phoneNumber;

@Min(18)
@Max(100)
private int age;

3. Apply Validation in the Controller:

@RestController
@RequestMapping("/users")
public class UserController {
@PostMapping("/register")
public ResponseEntity<String> registerUser(@Valid
@RequestBody UserRequest userRequest) {
return ResponseEntity.ok("User registered
successfully");

4. Handle Validation Errors: Spring Boot
automatically handles validation errors and returns
HTTP 400 with details.

CHAPTER 3 DATA PROTECTION AND VALIDATION FOR RESTFUL APIS

Summary

In this chapter, we described data protection and validation for RESTful
APIs. We started introducing the main key objectives of data protection
and why in general data protection is so important.

We elaborated the key principles for RESTful API Data Security and the
best practices to consider.

Finally, we provided a good set of examples showcasing different
security techniques to protect RESTful APIs including HTTPS, JWT, etc.

43

CHAPTER 4

JSON Web Token
(JWT) Authentication

This chapter will explore REST API and JSON Web Token (JWT)
authentication and authorization using Spring Boot 3, Spring Security 6,
and PostgreSQL DB.

What Is JSON Web Token (JWT)?

JSON Web Token (JWT) is an open standard (RFC 7519) that defines a
compact and self-contained way for securely transmitting information
between parties as a JSON object. JWTs are commonly used for

authentication and authorization purposes in web applications and APIs.

A JWT consists of three parts:

1. Header: The header typically consists of two
parts—the type of the token (JWT) and the
signing algorithm being used, such as HMAC
SHA256 or RSA.

{
Ilalgll: IIH5256II,
|Itypll : IIJWT“

}

© Massimo Nardone 2025
M. Nardone, Secure RESTful APIs, Apress Pocket Guides,
https://doi.org/10.1007/979-8-8688-1285-9_4

45

https://doi.org/10.1007/979-8-8688-1285-9_4#DOI

CHAPTER 4 JSON WEB TOKEN (JWT) AUTHENTICATION

2. Payload: The second part of the token is the
payload, which contains the claims. Claims are
statements about an entity (typically the user) and
additional metadata and can be categorized into
three types:

¢ Registered Claims: These are predefined claims
with specific meanings, like iss (issuer), exp
(expiration time), sub (subject), and more.

e Public Claims: These are custom claims that you
define to convey additional information.

o Private Claims: These are custom claims that are
meant to be shared between parties that agree
on their usage and are not defined in any public
specification.

{
"sub": "1234567890",
"name": "Massimo Nardone",
"iat": 6723561290

3. Signature: To create the signature part, you have
to take the encoded header, the encoded payload,
a secret, and the algorithm specified in the header
and sign that. The signature is used to verify that the
sender of the JWT is who it says it is and to ensure
that the message wasn’t changed along the way.

46

CHAPTER 4 JSON WEB TOKEN (JWT) AUTHENTICATION

Here is how JWTs work:

e Authentication: When a user logs in, the server creates
a JWT containing the user’s information and signs it
with a secret key. This JWT is then sent to the client.

e Authorization: The client includes the JWT in the
headers of subsequent requests to the server. The
server can then verify the JWT’s signature and extract
the user’s information from the payload to grant access
to protected resources.

Figure 4-1 shows how JWT works.

4 BearerToken
o AuthenticationToken

L) AuthenticationManager

y g ProviderManager
e Jwt
AuthenticationToken
-« 1
I Jwt | IAuthorities]
S 3 Authentication ()
Providers
—/

e I—
(3] ‘ JwtDecoder ‘ I

; .~ ‘ JwtAuthenticationProvider ‘4—
/] ‘ JwtAuthenticationConverter ‘ : 1 :

Figure 4-1. JWT working diagram (source: docs.spring.io)

1. The authentication filter dissects the following
process: First, the bearer token passes a
BearerTokenAuthenticationToken to the
AuthenticationManager, which is implemented by
the ProviderManager.

47

http://docs.spring.io

CHAPTER 4 JSON WEB TOKEN (JWT) AUTHENTICATION

2. The ProviderManager is configured to
use an AuthenticationProvider of type
JwtAuthenticationProvider.

3. JwtAuthenticationProvider decodes, verifies, and
validates the Jwt using a JwtDecoder.

4. JwtAuthenticationProvider then uses the
JwtAuthenticationConverter to convert the Jwt into a
collection of granted authorities.

5. When authentication is successful, the
authentication that is returned is of type
JwtAuthenticationToken and has a principal that
is the Jwt returned by the configured JwtDecoder.
Ultimately, the returned JwtAuthenticationToken
will be set on the SecurityContextHolder by the
authentication filter.

The advantages of JWT are as follows:

e Compact: JWTs are compact and can be sent as URL
parameters, in an HTTP header, or in cookies.

« Self-Contained: The token itself contains all the
necessary information, reducing the need to query a
database for user information.

« Decentralized: Since JWTs are self-contained, the
server doesn’t need to keep session information,
making it easier to scale and distribute applications.

For security purposes, JWTs are digitally signed rather than encrypted.
While the token’s contents can be decoded by anyone with access, the
signature ensures its integrity. Sensitive data should not be stored in the
payload, as it can be easily decoded.

48

CHAPTER 4 JSON WEB TOKEN (JWT) AUTHENTICATION

To prevent tampering, it’s crucial to use robust and secure algorithms
for signing tokens. Signing secrets must be kept confidential, and if public-
key cryptography is used, the private key must remain secure.

JWTs are commonly used to implement secure authentication and
authorization mechanisms in modern web applications, APIs, and single
sign-on (SSO) systems.

We can now start to build an example to show how to secure a REST
API using JSON Web Token (JWT) using Spring Security v6, Spring Boot
v3+, and PostgreSQL DB.

As the first step, let’s download and install PostgreSQL from https://
www . postgresql.org/download/windows/.

1. How Do We Create a New DB and User
in PostgreSQL?

To create a new DB named “jwtsecuritydb” with username = postgres and
password = postgres, use the following commands:

postgres=# create database jwtsecuritydb;

postgres=# create user postgres with encrypted password
‘postgres’;

postgres=# grant all privileges on database jwtsecuritydb to
postgres;

Figure 4-2 shows that our new PostgreSQL DB is up and running.

49

https://www.postgresql.org/download/windows/
https://www.postgresql.org/download/windows/

CHAPTER 4 JSON WEB TOKEN (JWT) AUTHENTICATION

% saL shell (psql)

jwtsecuritydb | postgres | UTF8 | libc | English_United States.1252 | English_United States.1252 |
| =Tc/postgres +
| | | | | |
| postgres=CTc/postgres +
| | | | | |
| postgressec=CTc/postgres

postgres | postgres | UTF8 | libc | English_United States.1252 | English_United States.1252 |

template® | postgres | UTF8 | libc | English_United States.1252 | English_United States.1252 |
| =c/postgres +
| | | | | I
| postgres=CTc/postgres

templatel | postgres | UTF8 | libe | English_United States.1252 | English_United States.1252 |
| =c/postgres +
| | | | | |

| | postgres=CTc/postgres
(4 rows)

jwtsecuritydb=#

Figure 4-2. PostgreSQL shell console

2. How Do We Create a New Project
with Spring Initializr?

Let’s create a new Spring project named JWT_Security_Authentication
using the Spring Initializr web tool at https://start.spring.io/ as
shown in Figure 4-3.

50

https://start.spring.io/

CHAPTER 4

€ spring initializr

Project Language

O Gradle - Groovy ® Java O Kotiin
O Gradle - Kotlin O Groovy

@ Mave

Spring Boot

O 34.0(SNAPSHOT) O 3.4.0(RC1)
O 336(SNAPSHOT) @ 235
O 32.12(SNAPSHOT) O 3211

Project Metadata

Group

Artifact

Name
Description
Package name
Packaging

Java

v)

com.apress

JWT_Security_Authentication

JWT_Security_Authentication

Demo project for Spring Boot

com.apress.JWT_Security_Authentication

® ar O War

@ 23 o 21 O 17

JSON WEB TOKEN (JWT) AUTHENTICATION

Dependencies ADD ... CTRL+B

Spring Security
Highly customizable authentication and access-control
framework for Spring applications.

Spring Data JPA
Persist data in SQL stores with Java Persistence API using
Spring Data and Hibernate.

Spring Web =

Build web, including RESTful, applications using Spring
MVC. Uses Apache Tomcat as the default embedded
container.

PostgreSQL Driver [FETH

A JDBC and R2DBC driver that allows Java programs to
connect to a PostgreSQL database using standard,
database independent Java code.

[X111 G DEVELOPER TOOLS

Java annotation library which helps to reduce boilerplate
code.

[GENERATE CTRL + & J[EXPLORE CTRL + SPACE ‘[SHARE... ‘

Figure 4-3. New Spring project using Spring Initializr

For our example we chose Java 23, Maven, JAR, Spring Web,

PostgreSQL Driver, Spring Security, Spring Data JPA, and Lombok as

dependencies.

<

51

CHAPTER 4 JSON WEB TOKEN (JWT) AUTHENTICATION

The project’s file structure is shown in Figure 4-4.

= W JWT_Security_Authentication Version control ~

Project ~

v [3 JWT_Security_Authentication
[0 .idea
3 .mvn
v [@src
3 main

Security_Authentication

uthenticationApplication

= .gitattributes
tignore
HELP.md
= .cmd
pom.xml
[lh External Libraries

= Scratches and Consoles

Figure 4-4. New Spring project structure

Next, we will add the needed dependencies in POM.xml files such as
JSON Web Token “io.jsonwebtoken” and Jakarta XML Binding “jaxb-api.”
The entire POM.xml file is showed in Listing 4-1.

Listing 4-1. The POM.xml file

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.orq/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.orqg/POM/4.0.0
https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

52

CHAPTER 4 JSON WEB TOKEN (JWT) AUTHENTICATION

<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>3.3.5</version>
<relativePath/> <!-- lookup parent from repository -->
</parent>
<groupId>com.apress</groupId>
<artifactId>JIWT Security Authentication</artifactId>
<version>0.0.1-SNAPSHOT</version>
<name>JIWT Security Authentication</name>
<description>Demo project for Spring Boot</description>
<url/>
<licenses>
<license/>
</licenses>
<developers>
<developer/>
</developers>
<scm>
<connection/>
<developerConnection/>
<tag/>
<url/>
</scm>
<properties>
<java.version>23</java.version>
</properties>
<dependencies>
<dependency>
<groupId>org.springframework.boot</qroupId>
<artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency>

53

CHAPTER 4

JSON WEB TOKEN (JWT) AUTHENTICATION

<dependency>

<groupId>org.springframework.boot</qgroupId>
<artifactId>spring-boot-starter-security</artifactId>

</dependency>
<dependency>

<groupId>org.springframework.boot</qroupId>
<artifactId>spring-boot-starter-web</artifactId>

</dependency>

<dependency>

<groupId>org.postgresql</qroupId>
<artifactId>postgresql</artifactId>
<scope>runtime</scope>

</dependency>
<dependency>

<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<optional>true</optional>

</dependency>
<dependency>

<groupld>org.springframework.boot</qroupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>

</dependency>
<dependency>

<groupld>org.springframework.security</qgroupId>
<artifactId>spring-security-test</artifactId>
<scope>test</scope>

</dependency>

54

CHAPTER 4 JSON WEB TOKEN (JWT) AUTHENTICATION

<dependency>
<groupId>io.jsonwebtoken</qroupId>
<artifactId>jjwt</artifactId>
<version>0.9.1</version>
</dependency>

<!-- JAXB API -->

<dependency>
<groupId>javax.xml.bind</groupId>
<artifactId>jaxb-api</artifactId>
<version»2.3.1</version>

</dependency>

<!-- JAXB Core Implementation -->
<dependency>
<groupld>org.glassfish.jaxb</groupId>
<artifactId>jaxb-runtime</artifactId>
<version>2.3.1</version>
</dependency>

</dependencies>

<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</qgroupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<configuration>
<excludes>
<exclude>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
</exclude>

55

CHAPTER 4 JSON WEB TOKEN (JWT) AUTHENTICATION

</excludes>
</configuration>
</plugin>
</plugins>
</build>

</project>

3. How Do We Configure the application.
properties File with Information

About the DB Used, the JPA/JWT,

and Server Configuration?

We can configure the application.properties file with information
about the DB used, the JPA/JWT, and server configuration, as shown in
Listing 4-2.

Listing 4-2. The application.properties file

DB Configuration

spring.datasource.url= jdbc:postgresql://localhost:5432/
jwtsecuritydb

spring.datasource.username= postgres
spring.datasource.password= postgres

JPA / HIBERNATE Configuration

spring.jpa.show-sql=true

spring.jpa.hibernate.ddl-auto=update
spring.jpa.properties.hibernate.dialect=org.hibernate.dialect.
PostgreSQLDialect

spring.jpa.generate-ddl=true

56

CHAPTER 4 JSON WEB TOKEN (JWT) AUTHENTICATION

Server Configuration
server.servlet.context-path=/api
server.port=8080

IWT Configuration ## 256

jwt.jwtsecret = 2c503130819c59ec3fb959fa7e5aaaded39
do38367ad532ba36e5601f9baa77f4bcc36ca2b7a2e011d96c451cfecs7
ef9997ccb3136€249186989d6e3eb0ea3ad40bda300e494210
4babe0cb1b8142eb33543dd4a589f545cacc86b29d3bb609181b492471
337718f37cel1f2e8e352d309988ada4097df54f01c676b81b375129964db52
€3433044e0bb9adf809c80933b736d55cfaa3bbaba7799dfef229bc96cbof
0c650ac8222519e607c5316044ac16342841630d1e2d74bd276cdesb
88e1b3010a5562216614863e704d4ec2eb6fad367d3a67ddfc6354030e6a336
0f6989bc955296808d4f8c7ce0b48e268dda7dd33e3195c09c37ea2af068999
6427db

jwt.jwtExpirationTime = 36000000

4. How Do We Generate a JWTsecret Value
for Our Project?

For our project I used the web app at https://jwtsecret.com/generate.

5. How Do We Create New APIs
for Our Project?

In our Spring Boot JWT authentication example, we first register a new
authorized user and then log in with username and password with the

user’s role “user”

57

https://jwtsecret.com/generate

CHAPTER 4 JSON WEB TOKEN (JWT) AUTHENTICATION

The APIs included in our example are

Methods URLs Actions

GET /api/public/welcome Retrieve public content.
POST /api/user/register Register a new account.
POST /api/user/authenticate Log in an account.

6. How Do We Create New User and Role
Models for Our Project?

Let’s define our roles and define an enum called RoleName with the roles
defined in Listing 4-3.

Listing 4-3. The RoleName class
package com.apress.JWT Security Authentication.models;
public enum RoleName {

USER;

7. How Do We Create New Role Java
Classes for Our Project?

Next, let’s define the Role class as shown in Listing 4-4.

58

CHAPTER 4 JSON WEB TOKEN (JWT) AUTHENTICATION

Listing 4-4. The Role class
package com.ons.securitylayerJwt.models;

import jakarta.persistence.*;

import lombok.*;

import lombok.experimental.FieldDefaults;

import org.springframework.security.core.GrantedAuthority;

import java.io.Serializable;

@Entity

@Getter

@Setter

@NoArgsConstructor

@AllArgsConstructor

@FieldDefaults(level = AccesslLevel.PRIVATE)
public class Role implements Serializable {

@Id

@GeneratedValue(strategy = GenerationType.IDENTITY)
Integer id ;

@Enumerated(EnumType.STRING)

RoleName roleName ;

public Role (RoleName roleName) {this.roleName = roleName;}
public String getRoleName() {
return roleName.toString();

The Role class will simply create a table named “Role” with the
authorized role such as “USER,” which will be used to define the credential
when registering a new user.

59

CHAPTER 4 JSON WEB TOKEN (JWT) AUTHENTICATION

Finally, we create the User model class as shown in Listing 4-5.

Listing 4-5. The User model class
package com.apress.JWT Security Authentication.models;

import jakarta.persistence.*;

import lombok.*;

import lombok.experimental.FieldDefaults;

import org.springframework.security.core.GrantedAuthority;
import org.springframework.security.core.authority.
SimpleGrantedAuthority;

import org.springframework.security.core.userdetails.
UserDetails;

import java.io.Serializable;
import java.util.Arraylist;
import java.util.Collection;
import java.util.list;

@Entity
@Table(name = "users",
uniqueConstraints = {
@UniqueConstraint(columnNames = "firstName"),
@UniqueConstraint(columnNames = "lastname"),
@UniqueConstraint(columnNames = "email")
1)
@Getter
@Setter
@A11ArgsConstructor
@ToString
@NoArgsConstructor

@FieldDefaults(level = AccesslLevel.PRIVATE)

60

CHAPTER 4 JSON WEB TOKEN (JWT) AUTHENTICATION
public class User implements Serializable , UserDetails {

@Id

@GeneratedValue(strategy = GenerationType.IDENTITY)
Integer id ;

String firstName ;

String lastName ;

String email;

String password ;

String userRole ;

@ManyToMany(fetch = FetchType.EAGER , cascade =
CascadeType.PERSIST)
List <Role> roles ;

public User (String email , String password , List<Role>
roles) {

this.email= email ;

this.password=password ;

this.roles=roles ;}

@0verride
public Collection<? extends GrantedAuthority>
getAuthorities() {
List<GrantedAuthority> authorities = new ArraylList<>();
this.roles.forEach(role -> authorities.add(new
SimpleGrantedAuthority(role.getRoleName())));
return authorities;

}

@0verride
public String getUsername() {
return this.email;

61

CHAPTER 4 JSON WEB TOKEN (JWT) AUTHENTICATION

@0verride
public boolean isAccountNonExpired() {
return true;

}

@0verride
public boolean isAccountNonLocked() {
return true;

}

@0verride
public boolean isCredentialsNonExpired() {
return true;

}

@verride
public boolean isEnabled() {
return true;

Mainly, the User class will be used as a model to fetch the user
credential and validate if it is not expired, locked, or enabled.

8. How Do We Create New Repository Java
Classes for Our Project?

We will implement the repositories needed by each model we just created
for persisting and accessing data. In a repository package, let’s create two

repositories:

UserRepository: To fetch the user repository info as
shown in Listing 4-6

62

CHAPTER 4 JSON WEB TOKEN (JWT) AUTHENTICATION

RoleRepository: To fetch the role repository info as
shown in Listing 4-7

Listing 4-6. The UserRepository class
package com.apress.JWT Security Authentication.repository;

import com.apress.JWT Security Authentication.models.User;
import org.springframework.data.jpa.repository.JpaRepository;

import java.util.Optional;

public interface UserRepository extends
JpaRepository<User,Integer> {

Boolean existsByEmail(String email);
Optional<User> findByEmail(String email);

Listing 4-7. The RoleRepository class
package com.apress.JWT Security Authentication.repository;

import com.apress.JWT Security Authentication.models.Role;
import com.apress.JWT Security Authentication.models.RoleName;
import org.springframework.data.jpa.repository.JpaRepository;

public interface RoleRepository extends
JpaRepository<Role,Integer> {

Role findByRoleName(RoleName roleName);

63

CHAPTER 4 JSON WEB TOKEN (JWT) AUTHENTICATION

Let’s configure now the Spring Security class named
“SpringSecurityConfig” in the security package as shown in Listing 4-8.

Listing 4-8. The SpringSecurityConfig class
package com.apress.JWT Security Authentication.security;

import lombok.RequiredArgsConstructor;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;
import org.springframework.security.authentication.
AuthenticationManager;

import org.springframework.security.config.annotation.
authentication.configuration.AuthenticationConfiguration;
import org.springframework.security.config.annotation.web.
builders.HttpSecurity;

import org.springframework.security.config.annotation.web.
configuration.EnableWebSecurity;

import org.springframework.security.config.http.
SessionCreationPolicy;

import org.springframework.security.crypto.bcrypt.
BCryptPasswordEncoder;

import org.springframework.security.crypto.password.
PasswordEncoder;

import org.springframework.security.web.SecurityFilterChain;
import org.springframework.security.web.authentication.
UsernamePasswordAuthenticationFilter;

@Configuration
@EnableWebSecurity
@RequiredArgsConstructor

64

CHAPTER 4 JSON WEB TOKEN (JWT) AUTHENTICATION
public class SpringSecurityConfig {

private final JwtAuthenticationFilter
jwtAuthenticationFilter ;

private final CustomerUserDetailsService
customerUserDetailsService ;

@Bean

public SecurityFilterChain filterChain (HttpSecurity http)

throws Exception

{ http
.sessionManagement(session -> session.sessionCreati
onPolicy(SessionCreationPolicy.STATELESS))
.authorizeHttpRequests(auth ->
auth.requestMatchers("/public/**", "/user/**").
permitAll());

http.addFilterBefore(jwtAuthenticationFilter,
UsernamePasswordAuthenticationFilter.class);

return http.build();
}

@Bean

public AuthenticationManager authenticationManager(Authen
ticationConfiguration authenticationConfiguration) throws
Exception

{ return authenticationConfiguration.
getAuthenticationManager();}

@Bean
public PasswordEncoder passwordEncoder()
{ return new BCryptPasswordEncoder(); }

65

CHAPTER 4 JSON WEB TOKEN (JWT) AUTHENTICATION

As this is the most important Spring Security class, let’s explain it a bit
more in detail:

1. @EnableWebSecurity: Allows Spring to find and
automatically apply the class to the global Web
Security.

2. Spring Security will load User details to perform
authentication and authorization. So it has the
customerUserDetailsService interface that we
need to implement.

3. PasswordEncoder: Used for the AuthenticationProvider.
If specified, it will use plain text.

4. The (HttpSecurity http) method is used from
the WebSecurityConfigurerAdapter interface to
tell Spring Security how we configure Cross-Site
Request Forgery (CSRF) (disabled to send POST
API), which filter (jwtAuthenticationFilter)
and when we want it to work (filter before
UsernamePasswordAuthenticationFilter), and which
exception handler is chosen (JwtUtilities).

5. Theimplementation of customerUserDetailsService
will be used for configuring AuthenticationProvider
by the AuthenticationManagerBuilder.
userDetailsService() method.

6. The URL path “/public/**” as a simple GET API will
be permitted to all so that we can test a simple GET
API with public content.

7. The URL path “/users/**” as a POST API will be
also permitted to all so that all users can register
and log in.

66

CHAPTER 4 JSON WEB TOKEN (JWT) AUTHENTICATION

Listing 4-9 shows the CustomerUserDetailsService class.

Listing 4-9. The CustomerUserDetailsService class
package com.apress.JWT Security Authentication.security;

import com.apress.JWT Security Authentication.models.User;
import com.apress.JWT Security Authentication.repository.
UserRepository;

import lombok.RequiredArgsConstructor;

import org.springframework.security.core.userdetails.
UserDetails;

import org.springframework.security.core.userdetails.
UserDetailsService;

import org.springframework.security.core.userdetails.
UsernameNotFoundException;

import org.springframework.stereotype.Component;

@Component

@RequiredArgsConstructor

public class CustomerUserDetailsService implements
UserDetailsService {

private final UserRepository UserRepository ;

@0verride
public UserDetails loadUserByUsername(String email) throws
UsernameNotFoundException {
User user = UserRepository.findByEmail(email).
orElseThrow(()-> new UsernameNotFoundException("User
not found !"));
return user ;

67

CHAPTER 4 JSON WEB TOKEN (JWT) AUTHENTICATION

9. How Do We Create a JWT Authentication
Filter for Our Project?

Now we need to create our JWT authentication filter and the
authentication provider to make the security filter chain work.

The JwtAuthenticationFilter class, shown in Listing 4-10, will be
used as a filter that executes once per request.

Listing 4-10. The JwtAuthenticationFilter class
package com.apress.JWT Security Authentication.security;

import jakarta.servlet.FilterChain;

import jakarta.servlet.ServletException;

import jakarta.servlet.http.HttpServletRequest;
import jakarta.servlet.http.HttpServletResponse;
import lombok.RequiredArgsConstructor;

import lombok.extern.slf4j.S1f4j;

import org.springframework.lang.NonNull;

import org.springframework.security.authentication.
UsernamePasswordAuthenticationToken;

import org.springframework.security.core.context.
SecurityContextHolder;

import org.springframework.security.core.userdetails.
UserDetails;

import org.springframework.stereotype.Component;
import org.springframework.web.filter.OncePerRequestFilter;

import java.io.IOException;

@S14j
@Component
@RequiredArgsConstructor

68

CHAPTER 4 JSON WEB TOKEN (JWT) AUTHENTICATION

public class JwtAuthenticationFilter extends
OncePerRequestFilter {

private final JwtUtilities jwtUtilities ;
private final CustomerUserDetailsService
customerUserDetailsService ;

@0verride
protected void doFilterInternal(@NonNull HttpServletRequest
request,
@NonNull HttpServletResponse response,
@NonNull FilterChain filterChain)
throws ServletException, IOException {

String token = jwtUtilities.getToken(request) ;

if (token!=null &3 jwtUtilities.validateToken(token))
{

String email = jwtUtilities.extractUsername(token);

UserDetails userDetails = customerUserDetailsService.
loadUserByUsername(email);
if (userDetails != null) {
UsernamePasswordAuthenticationToken
authentication =
new UsernamePasswordAuthenticationToken
(userDetails.getUsername() ,null ,
userDetails.getAuthorities());
log.info("authenticated user with email
{}", email);
SecurityContextHolder.getContext().setAuthentication
(authentication);

69

CHAPTER 4 JSON WEB TOKEN (JWT) AUTHENTICATION

filterChain.doFilter(request,response);

JWT Authentication Filter

Let’s explain a bit the JwtAuthenticationFilter class.

Now we will create the JWT service class we used in the class above.

First, we must check if the authorization header from our request is not
null and it starts with the bearer word.

Next, if the request has JWT, we will validate it and parse username
from it. We will extract our JWT from the authorization header and use a
function from the JwtSecvice class called extractUsername to extract the
value of the user email from the JWT.

Next, from username, we will use the “UserDetails” to create an
Authentication object and set the current UserDetails in SecurityContext
using the setAuthentication(authentication) method.

Finally, we send to get UserDetails:

UserDetails userDetails = customerUserDetailsService.
loadUserByUsername(email);

Let’s create now the JwtUtilities class under the .security.jwt package
where we will

o Extractusername from JWT:
extractUsername(String token)

¢ Generate a JWT from email, date, expiration,
and secret

o Validate a JWT: Invalid signature, expired JWT token,
unsupported JWT token, etc.

70

CHAPTER 4 JSON WEB TOKEN (JWT) AUTHENTICATION

Listing 4-11 shows the JwtUtilities class.

Listing 4-11. The JwtUtilities class
package com.apress.JWT Security Authentication.security;

import io.jsonwebtoken.*;

import jakarta.servlet.http.HttpServletRequest;

import lombok.extern.slf4j.S1f47j;

import org.springframework.beans.factory.annotation.Value;
import org.springframework.security.core.userdetails.
UserDetails;

import org.springframework.stereotype.Component;

import org.springframework.util.StringUtils;

import java.time.Instant;

import java.time.temporal.ChronoUnit;
import java.util.Date;

import java.util.list;

import java.util.function.Function;

@S1f4j
@Component
public class JwtUtilities{

@value("${jwt.jwtsecret}")
private String jwtsecret;

@value("${jwt.jwtExpirationTime}")
private Long jwtExpirationTime;

public String extractUsername(String token) {
return extractClaim(token, Claims::getSubject);

71

CHAPTER 4 JSON WEB TOKEN (JWT) AUTHENTICATION

72

public Claims extractAllClaims(String token)
{return Jwts.parser().setSigningKey(jwtsecret).
parseClaimsJws(token).getBody();}

public <T> T extractClaim(String token, Function<Claims, T>
claimsResolver) {

final Claims claims = extractAllClaims(token);

return claimsResolver.apply(claims);
}
public Date extractExpiration(String token) { return
extractClaim(token, Claims::getExpiration); }

public Boolean validateToken(String token, UserDetails
userDetails) {
final String email = extractUsername(token);
return (email.equals(userDetails.getUsername()) &&
lisTokenExpired(token));
}
public Boolean isTokenExpired(String token) {
return extractExpiration(token).before(new Date());

}

public String generateToken(String email , List<String>
roles) {

return Jwts.builder().setSubject(email).
claim("role",roles).setIssuedAt(new Date(System.current
TimeMillis()))
.setExpiration(Date.from(Instant.now().
plus(jwtExpirationTime, ChronoUnit.MILLIS)))
.signWith(SignatureAlgorithm.HS256, jwtsecret).
compact();

CHAPTER 4 JSON WEB TOKEN (JWT) AUTHENTICATION

public boolean validateToken(String token) {

}

try {

Jwts.parser().setSigningKey(jwtsecret).
parseClaimsJws(token);
return true;

} catch (SignatureException e) {
log.info("Invalid JIWT signature.");
log.trace("Invalid IWT signature trace: {}", e);

} catch (MalformedJwtException e) {
log.info("Invalid JWT token.");
log.trace("Invalid IWT token trace: {}", e);

} catch (ExpiredJwtException e) {
log.info("Expired IWT token.");
log.trace("Expired IWT token trace: {}", e);

} catch (UnsupportedIwtException e) {
log.info("Unsupported IWT token.");
log.trace("Unsupported IWT token trace: {}", e);

} catch (IllegalArgumentException e) {
log.info("IWT token compact of handler are
invalid.");
log.trace("IWT token compact of handler are invalid
trace: {}", e);

}

return false;

public String getToken (HttpServletRequest
httpServletRequest) {

final String bearerToken = httpServletRequest.
getHeader ("Authorization");
if(StringUtils.hasText(bearerToken) && bearerToken.
startsWith("Bearer "))

73

CHAPTER 4 JSON WEB TOKEN (JWT) AUTHENTICATION

{return bearerToken.substring(7,bearerToken.length());
} // The part after "Bearer "
return null;

Let’s create now the TDO classes such as

¢ BearerToken: To set the bearer JWT token used in our
example (Listing 4-12)

e LoginDto: Which is the Data Transfer Object for user
login (Listing 4-13)

e RegisterDto: Which is the Data Transfer Object for
registration of the user (Listing 4-14)

Listing 4-12. The BearerToken class
package com.ons.securitylayerJwt.dto;
import lombok.Data;

@Data
public class BearerToken {

private String accessToken ;
private String tokenType ;

public BearerToken(String accessToken , String tokenType) {
this.tokenType = tokenType ;
this.accessToken = accessToken;

74

CHAPTER 4 JSON WEB TOKEN (JWT) AUTHENTICATION

Listing 4-13. The LoginDto class
package com.ons.securitylayerJwt.dto;

import lombok.Accesslevel;
import lombok.Data;
import lombok.experimental.FieldDefaults;

@Data
@FieldDefaults(level = AccesslLevel.PRIVATE)
public class LoginDto {

private String email ;
private String password ;

}

Listing 4-14. The RegisterDto class
package com.ons.securitylayerJwt.dto;

import lombok.Accesslevel;
import lombok.Data;
import lombok.experimental.FieldDefaults;

import java.io.Serializable;

@Data
@FieldDefaults(level = AccesslLevel.PRIVATE)
public class RegisterDto implements Serializable {

String firstName ;
String lastName ;
String email;

String password ;
String userRole ;

75

CHAPTER 4 JSON WEB TOKEN (JWT) AUTHENTICATION

Let’s create now the Spring REST APIs Controller classes such as

e PublicRestController: A simple REST GET API with
link “/public/welcome” for returning a Welcome
message (Listing 4-15)

o UserRestController: Two REST POST APISs to register
and log in a user, which will be explained more later
(Listing 4-16)

Listing 4-15. The PublicRestController class

package com.apress.JWT Security Authentication.presentation;

import lombok.RequiredArgsConstructor;

import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

@RestController
@RequestMapping("/public")
@RequiredArgsConstructor

public class PublicRestController {

@GetMapping("/welcome™)
public String welcome ()
{ return "Welcome! This is a public content!" ;}

Listing 4-16. The UserRestController class
package com.apress.JWT Security Authentication.presentation;

import com.apress.JWT Security Authentication.controllers.
IUserService;

76

CHAPTER 4 JSON WEB TOKEN (JWT) AUTHENTICATION

import com.apress.JWT Security Authentication.dto.LloginDto;
import com.apress.JWT Security Authentication.dto.RegisterDto;

import lombok.RequiredArgsConstructor;

import org.springframework.http.ResponseEntity;

import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

@RestController
@RequestMapping("/user")
@RequiredArgsConstructor

public class UserRestController {

private final IUserService iUserService ;

@PostMapping("/register")

public ResponseEntity<?> register (@RequestBody RegisterDto
registerDto)

{ return iUserService.register(registerDto);}
@PostMapping("/authenticate")

public String authenticate(@RequestBody LoginDto loginDto)
{ return iUserService.authenticate(loginDto);}

10. How Do We Create the Spring REST
APIs Controller?

As explained earlier this REST APIs Controller UserService and its
interface IUserService will be used to register a new user into the DB as
well as log in the user.

77

CHAPTER 4 JSON WEB TOKEN (JWT) AUTHENTICATION

As a final step, let’s create the Spring REST APIs Controller (Listings
4-17 and 4-18) for authentication providing APIs for register and login
actions such as

e api/user/register to:

e Check the existing username/email.

e Create a new User with role “USER’

o Save User to the database using UserRepository.
e api/user/authenticate to:

e Authenticate the email and password.

o Update SecurityContext using the
Authentication object.

e Generate JWT.
e Get UserDetails from the Authentication object.

e Response contains JWT and UserDetails data.

Listing 4-17. The IUserService class
package com.apress.JWT Security Authentication.controllers;

import com.apress.JWT Security Authentication.dto.LloginDto;
import com.apress.JWT Security Authentication.dto.RegisterDto;
import com.apress.JWT Security Authentication.models.User;
import com.apress.JWT Security Authentication.models.Role;
import org.springframework.http.ResponseEntity;

public interface IUserService {

78

CHAPTER 4 JSON WEB TOKEN (JWT) AUTHENTICATION

String authenticate(LoginDto loginDto);
ResponseEntity<?> register (RegisterDto registerDto);
Role saveRole(Role role);

User saverUser (User user) ;

}

Listing 4-18. The UserService class
package com.apress.JWT Security Authentication.controllers;

import com.apress.JWT Security Authentication.dto.LloginDto;
import com.apress.JWT Security Authentication.dto.RegisterDto;
import com.apress.JWT Security Authentication.dto.BearerToken;
import com.apress.JWT Security Authentication.models.User;
import com.apress.IJWT Security Authentication.models.Role;
import com.apress.JWT Security Authentication.models.RoleName;
import com.apress.JWT Security Authentication.repository.
RoleRepository;

import com.apress.JWT Security Authentication.repository.
UserRepository;

import com.apress.JWT Security Authentication.security.
JwtUtilities;

import jakarta.transaction.Transactional;

import lombok.RequiredArgsConstructor;

import org.springframework.http.HttpStatus;

import org.springframework.http.ResponseEntity;

import org.springframework.security.authentication.
AuthenticationManager;

import org.springframework.security.authentication.
UsernamePasswordAuthenticationToken;

import org.springframework.security.core.Authentication;
import org.springframework.security.core.context.
SecurityContextHolder;

79

CHAPTER 4 JSON WEB TOKEN (JWT) AUTHENTICATION

import org.springframework.security.core.userdetails.
UsernameNotFoundException;

import org.springframework.security.crypto.password.
PasswordEncoder;

import org.springframework.stereotype.Service;

import java.util.Arraylist;
import java.util.Collections;
import java.util.Llist;

@Service

@Transactional

@RequiredArgsConstructor

public class UserService implements IUserService{

private final AuthenticationManager authenticationManager ;
private final UserRepository userRepository ;

private final RoleRepository roleRepository ;

private final PasswordEncoder passwordEncoder ;

private final JwtUtilities jwtUtilities ;

@0verride
public Role saveRole(Role role) {
return roleRepository.save(role);

}

@0verride
public User saverUser(User user) {
return userRepository.save(user);

}

@0verride
public ResponseEntity<?> register(RegisterDto
registerDto) {

80

CHAPTER 4 JSON WEB TOKEN (JWT) AUTHENTICATION

if(userRepository.existsByEmail(registerDto.

getEmail()))

{ return new ResponseEntity<>("email is already taken

I", HttpStatus.SEE OTHER); }

else

{ User user = new User();
user.setEmail(registerDto.getEmail());
user.setFirstName(registerDto.getFirstName());
user.setLastName(registerDto.getLastName());
user.setPassword(passwordEncoder.
encode(registerDto.getPassword()));
String myrole = "user";

if (registerDto.getUserRole().equals("") Il

registerDto.getUserRole().equals("user")) {
myrole = "USER";

}

Role role = roleRepository.findByRoleName(RoleName.
valueOf(myrole));

user.setUserRole(registerDto.getUserRole());

user.setRoles(Collections.singletonList(role));
userRepository.save(user);

String token = jwtUtilities.
generateToken(registerDto.getEmail(),Collections.si
ngletonlList(role.getRoleName()));

return new ResponseEntity<>(new BearerToken(token ,
"Bearer "),HttpStatus.O0K);

81

CHAPTER 4 JSON WEB TOKEN (JWT) AUTHENTICATION

@0verride
public String authenticate(LoginDto loginDto) {
Authentication authentication= authenticationManager.
authenticate(
new UsernamePasswordAuthenticationToken(
loginDto.getEmail(),
loginDto.getPassword()

);
SecurityContextHolder.getContext().setAuthentication(
authentication);

User user = userRepository.findByEmail(authentication.
getName()).orElseThrow(() -> new
UsernameNotFoundException(“User not found"));
List<String> rolesNames = new ArraylList<>();
user.getRoles().forEach(r-> rolesNames.add(r.
getRoleName()));

String token = jwtUtilities.generateToken(user.
getUsername(),rolesNames);

return "User login successful! Token:

+ token;

The last Java class we want to update is
JwtSecurityAuthenticationApplication, shown in Listing 4-19, where
we wish role “USER” to be populated automatically into the roles DB table.

Listing 4-19. The JwtSecurityAuthenticationApplication class
package com.apress.JWT Security Authentication;
import org.springframework.boot.CommandLineRunner;

import org.springframework.boot.SpringApplication;

82

CHAPTER 4 JSON WEB TOKEN (JWT) AUTHENTICATION

import org.springframework.boot.autoconfigure.

SpringBootApplication;

import org.springframework.context.annotation.

Bean;

import org.springframework.security.crypto.password.

PasswordEncoder;

import com.apress.JWT Security Authentication.

IUserService;

import com.apress.JWT Security Authentication.
import com.apress.JWT Security Authentication.
import com.apress.JWT Security Authentication.

RoleRepository;

import com.apress.JWT Security Authentication.

UserRepository;

@SpringBootApplication

controllers.
models.Role;
models.RoleName;

repository.

repository.

public class JwtSecurityAuthenticationApplication {

public static void main(String[] args) {

SpringApplication.run(JwtSecurityAuthentication

Application.class, args);

}
@®Bean

CommandLineRunner run (IUserService iUserService ,
RoleRepository roleRepository , UserRepository

userRepository , PasswordEncoder passwordEncoder)

{return args ->

{ iUserService.saveRole(new Role(RoleName.USER));

b}

83

CHAPTER 4 JSON WEB TOKEN (JWT) AUTHENTICATION

The new project structure should look like Figure 4-5.

. JWT_Security_Authentication ~ Version control ~

WT_Security_Authentication

curity_Authentication

~ [dto

BearerToken

RoleName
User
EN]]
AdminR ntroller
Public Controller

Controller

JwtAuthenticationFilter

JwtUtilities

Figure 4-5. Final Spring project structure

84

CHAPTER 4 JSON WEB TOKEN (JWT) AUTHENTICATION

Now that all the classes are generated, let’s run and test our example:
mvn spring-boot:run.

11. How to Test Our Project?

First of all, let’s download and install Postman testing tool at
https://www.postman.com/downloads/

Then install and run the tool as shown in Figure 4-6.

Home Workspaces v APl Network ® egrade -

bl
a z

Pinned collections

Figure 4-6. Postman tool

Let’s test the http://localhost:8080/api/public/welcome to see that
the public REST GET API works properly. Figure 4-7 shows the result using
Postman testing tool.

85

https://www.postman.com/downloads/

CHAPTER 4 JSON WEB TOKEN (JWT) AUTHENTICATION

@@ htp: 080/api [save
GET http://localhost:8080/api/public/welcome Send 57
Pa Headers (6) Body Cookies
none form-data x-www-form-urlencoded @ raw binary JSON v Beautify
Body Cookies Headers OK B SaveResponse v
Pretty Preview Text v =)

mQ

1 Welcome! This is a public content!|

Figure 4-7. Testing public REST GET API

Next, let’s register, via http: //localhost:8080/api/user/register, a
new user with role “USER” with the following credentials:
{

"firstName": "Massimo",
"lastName": "Nardone",
"email": "mmassimo@gmail.com”,

"password": "masspasswd",
"userRole": "user”

}

Figure 4-8 will show the result in Postman.

86

CHAPTER 4 JSON WEB TOKEN (JWT) AUTHENTICATION

i3 i R save ¢
POST v http://localhost:8080/api/user/register Send v
Params Authorization ~ Headers (8) Bodye Pre-requestScript Tests Settings Cookies
none form-data x-www-form-urlencoded @ raw binary JSON v Beautify

Body Cookies Headers Test Results @® Status: 200 0K Time: 706 ms Size: 5438 Save Response v

Pretty Raw Preview Visualize JSON v = mQ

I

LCIyb2x1IjpbI1VTRVIiXSwiaWFOIjoxNjkeMDIyMzE3LCI1eHAIOFE20TQWNTgZMTdY.
3gf0",

Figure 4-8. Registered a new user with “USER” role

As you can see a new user is registered with status 200 OK and an
access JSON Web Token is generated. The token type is Bearer. We can
use that token to log in providing email/password and the JSON token
just created now via http://localhost:8080/api/user/authenticate.
Figures 4-9 and 4-10 show the result.

POST http://localhost:8080/api/user/authenticate
Params Authorization Headers (9) Body e Pre-request Script Tests Settings
none form-data x-www-form-urlencoded @ raw binary JSON
p B
o
2 "email”: "mmassimo@gmail.com”,
3 "password": "masspasswd"

Figure 4-9. Logging in the user with valid email/password

87

CHAPTER 4 JSON WEB TOKEN (JWT) AUTHENTICATION

] 080/api i R save
POST v http:/flocalhost:8080/api/user/authenticate ‘ Send v
Params Authorization e Headers (9) Body e Pre-request Script Tests Settings Cookies
Type v y
Bearer To... Token eyJhbGciOiJIUzZIINIJG.eyJzdWIiOiJtbWFzc2

The authorization header will be

automatically generated v ou send

the request.

Learn more about authorization 2

Body Cookies Headers Test Results ® status: 200 0K Time: 315ms Size: 5348 Save Response v
Pretty Raw Preview Visualize Text v = mQ
1 User login successful! Token: eyJhbGci0iJIUzI1INiJ9.

©yJzdWIi0iJtoliFzc21tbOBNbWFPbC5]0201LCIyb2x1T1pbIIVTRVIEXSHiaFOIjoxNjkOMDCXNIQ2LCI1eHALOFE20TQXMDC2NDZS .
keZIIw2L0Qdcjk-2zeM4PTa_L_ZGol5I5d664nolL2Ms

Figure 4-10. Logging in the user with valid JWT

Notice the status 200 OK, which means the user login is validated.
Figure 4-11 shows the result if, for instance, we provide a wrong password.

i® http: 080/api i [Save
POST v http://localhost:8080/api/user/authenticate Send v
Params Authorization ® Headers (9) Body e Pre-request Script Tests Settings Cookies
none form-data x-www-form-urlencoded @ raw binary JSON v Beautify

2

3

@ status: 403 Forbidden Time: 260 ms Size: 300 B Save Response v

Body Cookies Headers (10 Test Results

Figure 4-11. Forbidden login for a user providing a wrong password

88

CHAPTER 4 JSON WEB TOKEN (JWT) AUTHENTICATION

Summary

In this chapter, we showed you an example of how to secure a REST API
using JSON Web Token (JWT) using Spring Security v6, Spring Boot v3+,
and PostgreSQL DB. We explained how JSON Web Token works and finally
provided a full example.

In the next chapter, we will show how to build a Securing OAuth2

Authentication application.

89

CHAPTER 5

Securing OAuth2
Authentication Flow

Spring Security is a highly extensible and customizable framework. Its
flexibility stems from being designed with object-oriented principles

and best practices, ensuring it is open for extension while remaining
closed for direct modification. In the previous chapter, we explored a

key extension feature of Spring Security—the ability to integrate various
authentication providers. This chapter focuses on one of the most widely
used authorization frameworks, Open Authorization 2.0 (OAuth 2.0). It will
guide you through creating a secure login application using Spring Boot,
Spring Web, and the OAuth2 client to connect with Google as provider.

RESTful APIs and OAuth 2.0

OAuth 2.0 is an authorization framework widely used to secure RESTful
APIs, enabling third-party applications to access resources on behalf of a
user without exposing their credentials. This makes OAuth 2.0 a critical
component for building secure and scalable API ecosystems.

© Massimo Nardone 2025 91
M. Nardone, Secure RESTful APIs, Apress Pocket Guides,
https://doi.org/10.1007/979-8-8688-1285-9_5

https://doi.org/10.1007/979-8-8688-1285-9_5#DOI

CHAPTER 5 SECURING OAUTH2 AUTHENTICATION FLOW

OAuth2 Introduction

OAuth 2.0 (short for Open Authorization 2.0) is a widely used authorization
framework that allows third-party applications to access a user’s resources
without exposing their credentials (such as usernames and passwords). It
provides a secure and standardized way for users to grant limited access to
their data or services to other applications or services, often referred to as
“clients.”

The key components of OAuth 2.0 are

¢ Resource Owner: The user who owns the data or
resource

e Client: The application requesting access to the
resource on behalf of the user

¢ Authorization Server: The server that authenticates
the resource owner and issues tokens

e Resource Server: The API or server hosting the
resource and validating tokens

It operates on the basis of tokens, which are short-lived and revocable
access credentials. These tokens are used to authenticate and authorize
access between the client application, the resource owner (typically a
user), and the resource server (where the protected resources are stored).

OAuth 2.0 is widely used for securing APIs, allowing users to grant
selective access to their data on platforms like social media, and enabling
single sign-on (SSO) across different services.

Here’s the typical flow about OAuth 2.0 operating through a token-
based mechanism with RESTful APIs:

1. Authorization Request:

e The client requests authorization from the resource
owner, typically via a login screen provided by the
authorization server.

92

CHAPTER5 SECURING OAUTH2 AUTHENTICATION FLOW

Authorization Grant:

e The resource owner grants permission (e.g.,
through a consent screen) to the client.

Access Token Issuance:

« The authorization server issues an access token to
the client if the grant is valid.

API Request with Token:

e The client sends the access token with each API
request (usually in the authorization header as a
bearer token).

Token Validation:

o Theresource server validates the token with the
authorization server or through introspection to
confirm the client’s access rights.

Resource Access:

e Upon validation, the resource server provides the
requested data or performs the desired operation.

Here are the advantages of using OAuth 2.0 in RESTful APIs:

Decoupled Authentication and Authorization: Allows
third-party access without sharing credentials.

Granular Access Control: Fine-grained permissions
through scopes.

Improved Security: Tokens reduce the risk of
credential leakage.

Scalability: OAuth 2.0 works seamlessly in distributed
architectures.

93

CHAPTER 5 SECURING OAUTH2 AUTHENTICATION FLOW

OAuth2 Security

OAuth 2.0 provides a framework for authorization, but it is essential to
implement it securely to protect user data and resources. Below are some
key security considerations and best practices when using OAuth 2.0:

e Use HTTPS: Always use HTTPS to protect the
communication between the client, authorization
server, and resource server. This ensures the
confidentiality and integrity of data transmitted during
the OAuth flow.

¢ Client Authentication: Implement proper client
authentication. Depending on the OAuth 2.0 flow
being used, clients should authenticate themselves
using client credentials or other methods like client
certificates.

e Authorization Code Flow: For web applications
and confidential clients, use the Authorization Code
Flow. This flow involves an authorization code that
is exchanged for an access token, reducing the risk of
exposing tokens in the browser.

o Token Storage: Safely store and manage access tokens
and refresh tokens on the client side. Avoid storing
tokens in insecure locations such as browser cookies,
and use secure storage mechanisms.

o Token Validation: When receiving access tokens from
the authorization server, validate them properly. Check
the token’s signature and expiration date to ensure
it’s valid.

94

CHAPTER5 SECURING OAUTH2 AUTHENTICATION FLOW

Scope Permissions: Ensure that clients only request
the minimum necessary scope of permissions (access
rights) from the user. This principle is known as the
principle of least privilege.

User Consent: Always obtain clear and informed
consent from the user before granting access to their
data. Users should understand what data the client
application can access and for what purpose.

Refresh Token Security: Protect refresh tokens as
they have a longer lifespan. Use secure storage and
transmission mechanisms for refresh tokens. Only
grant refresh tokens to confidential clients when

necessary.

Token Revocation: Implement token revocation
mechanisms. Allow users to revoke access to their data
and invalidate access tokens and refresh tokens when
they are no longer needed.

Rate Limiting and Throttling: Implement rate limiting
and throttling to protect against brute-force and denial-
of-service attacks on OAuth endpoints.

Cross-Site Request Forgery (CSRF) Protection:
Use anti-CSRF tokens or other techniques to protect
against CSRF attacks that can trick users into making
unintended requests.

Authorization Server Security: Secure the
authorization server against common security threats,
such as injection attacks, and keep its software and
libraries up to date.

95

CHAPTER 5 SECURING OAUTH2 AUTHENTICATION FLOW

o Logging and Monitoring: Implement comprehensive
logging and monitoring to detect and respond to
suspicious activities and security breaches.

o Token Rotation: Periodically rotate client secrets and
access tokens to mitigate the risk of exposure due to
unauthorized access or leaks.

e Security Assessments: Conduct security assessments,
code reviews, and penetration testing to identify
and address vulnerabilities in your OAuth 2.0

implementation.

The security of an OAuth 2.0 implementation depends on the
combination of factors like the OAuth flow being used, the specific use case,
and the client and authorization server configurations. Therefore, it’s crucial
to follow best practices, stay informed about security updates, and adapt your
OAuth 2.0 implementation to the unique requirements of your application.

1. How to Integrate OAuth2 with Spring
Security for RESTful APIs?

OAuth 2.0 can be integrated with Spring Security to secure your Java-based
web applications, APIs, and microservices. Spring Security provides robust
support for implementing OAuth 2.0 authentication and authorization in a
Spring-based application.

Here’s a basic overview of how to implement OAuth 2.0 using Spring
Security:

e Add Dependencies: Ensure that you have the
necessary dependencies in your project. Spring
Security OAuth2 module is essential for OAuth 2.0
support. You can include it in your POM.xml or build.
gradle file.

96

CHAPTER5 SECURING OAUTH2 AUTHENTICATION FLOW

o Configuration: Configure Spring Security to handle
OAuth 2.0 by creating a configuration class that
extends AuthorizationServerConfigurerAdapter. This
class should provide details about your OAuth 2.0
authorization server, client credentials, and endpoints.
Listing 5-1 shows a configuration Java example.

Listing 5-1. Configure OAuth2

import org.springframework.context.annotation.*;

import org.springframework.security.oauth2.config.annotation.
web.configuration.*;

@Configuration

@EnableAuthorizationServer

public class OAuth2AuthorizationServerConfig extends
AuthorizationServerConfigurerAdapter {

@0verride

public void configure(ClientDetailsServiceConfigurer

clients) throws Exception {

clients.inMemory()

.withClient("client-id")
.secret("client-secret")
.authorizedGrantTypes("authorization code",
"password", "refresh token")
.scopes("read", "write")
.redirectUris("http://localhost:8080/callback");

o User Authentication: Configure how your application
handles user authentication. You can use the default
Spring Security mechanisms or integrate with external
identity providers.

97

CHAPTER 5 SECURING OAUTH2 AUTHENTICATION FLOW

o Resource Server Configuration (Optional): If you're
building an OAuth 2.0 resource server (e.g., an API),
you’ll need to configure Spring Security to validate
access tokens. You can do this by creating a class that
extends ResourceServerConfigurerAdapter. Listing 5-2
shows a server configuration Java example.

Listing 5-2. Configure OAuth2 resource server

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;
import org.springframework.security.config.annotation.web.
builders.HttpSecurity;

import org.springframework.security.config.annotation.web.
configuration.EnableWebSecurity;

import org.springframework.security.web.SecurityFilterChain;

@Configuration
@EnablelWebSecurity

public class SecurityConfiguration {

@Bean

SecurityFilterChain securityFilterChain(HttpSecurity http)

throws Exception {

return http
.authorizeHttpRequests(auth -> {

auth.requestMatchers("/api/**").
authenticated ();
auth.anyRequest().authenticated();

1)

98

CHAPTER5 SECURING OAUTH2 AUTHENTICATION FLOW

.oauth2Login(withDefaults())
.build();

Secure Endpoints: Use Spring Security annotations like
@Secured, @PreAuthorize, or @PostAuthorize to secure
specific methods or endpoints in your application.

User Consent and Authentication Flow: Implement
a user interface for the OAuth 2.0 authentication flow.
This includes handling user consent and redirecting
users to the OAuth 2.0 authorization endpoint.

Token Storage and Management: Implement token
storage and management, including access tokens,
refresh tokens, and their life cycles. Spring Security
OAuth2 provides mechanisms to handle this.

Testing and Validation: Thoroughly test your OAuth
2.0 implementation to ensure that the authentication
and authorization flows work as expected. You can use
tools like Postman or dedicated OAuth 2.0 clients for
testing.

Logging and Monitoring: Implement logging and
monitoring to track security-related events and
potential issues.

Documentation and Error Handling: Provide clear
documentation for developers using your OAuth
2.0-protected resources, and implement proper error
handling to respond to various OAuth 2.0-related
errors gracefully.

99

CHAPTER 5 SECURING OAUTH2 AUTHENTICATION FLOW

2. What Is OAuth2 Login?

OAuth 2.0 login is a secure and standardized way for users to grant
permission to third-party applications to access their protected resources
or perform actions on their behalf without sharing their login credentials.
It is commonly used for single sign-on (SSO) and enabling users to log in
to different websites or applications using their existing credentials from a
trusted identity provider (IdP).

Here’s what is included in OAuth2 login:

o User-centric authentication
¢ Role of the user

e Authorization Code Flow

e Single sign-on (SSO)

o Third-party applications

e Scoped access

o Token-based authentication
e Security and authorization

e Widely adopted

The OAuth 2.0 login feature lets an application have users log in to the
application by using their existing account at an OAuth 2.0 provider (such
as GitHub) or OpenID Connect 1.0 provider (such as Google). OAuth2
login can be also used to authenticate toward Facebook, Twitter, etc.

100

CHAPTER5 SECURING OAUTH2 AUTHENTICATION FLOW

3. How to Develop an OAuth2 and Spring
Security Project?

In our example we wish to configure a Spring authorization server with a
social login provider such as Google and authenticate the user with OAuth
2.0 login, replacing the common form login.

Let’s build our authentication and login application using Spring Boot
3, Spring Security 6, Spring Web, and OAuth2 Client.

The very first step is to create the Spring Boot Maven project using
Spring Initializr, which is the quickest way to generate Spring Boot
projects. You just need to choose the language, build system, and JVM
version for your project, and it will be automatically generated with all the
dependencies needed.

Navigate to https://start.spring.io/ and use the Spring Initializr
web-based Spring project generator to create the Spring Boot Maven
project named OAuth2SecurityLogin, as shown in Figure 5-1.

_ spring initializr

O

O Gradie-Grooyy O Gradie - Kotin] O Kotin O Groovy

OAuth2 Client |2
Spring Boot integration for Spring Security's OAuth2/OpeniD Connect ciient features.

Spring Boot
O 341(SNAPSHOT) @ O 337(sNAPsHOT) O 336 Spring Web =3
Build web, including RESTul, applications using Spring MVC. Uses Apache Tomcat as the
a

Project Metadata default embedded container

Group com.apress

Artifact OAuth2SecurityLogin

Name OAuth2SecurityLogin

Description Demo project for Spring Boot and Oauth2}

Package name com.apress.OAuth2SecurityLogin

Packaging @ O War

Java @ o2 O

Figure 5-1. Generate an OAuth2 project using the Initializr
web-based Spring project generator

101

https://start.spring.io/

CHAPTER 5 SECURING OAUTH2 AUTHENTICATION FLOW

Select a Java v23 Maven project, using 3.4.0 Spring Boot version, and
add the following dependencies: Spring Web and OAuth2 Client.

We will also add as dependency to the POM.xml file the Thymeleaf
Java library, which is a template engine used to parse and transform the
data produced by the application to template files. It acts just like HTML
but is provided with more attributes used to render data.

Fill in all the required information and then click to generate the
project. A project .zip file will be automatically generated. Download and
unzip the file on your machine.

When opening the project with Intelli] IDEA 2024.2.4, it will look
Figure 5-2.

Project ~

v [OAuth2SecurityLogin

> [.idea
> 3 .mvn
v @src

v [main

IENE]
v [e] com.apress.OAuth2SecurityLogin
& OAuth2SecurityLoginApplication
> [2resources
> Dtest

= .gitattributes

@ .gitignore
HELP.md

(3 mvnw
= mvnw.cmd
pom.xml
> (b External Libraries

» = Scratches and Consoles

Figure 5-2. Maven project structure

102

CHAPTER5 SECURING OAUTH2 AUTHENTICATION FLOW

4. What Are the Needed OAuth2 and Spring
Security Dependencies?

The most important dependencies, which will be automatically updated in
the POM. xml file, are shown in Listing 5-3.

Listing 5-3. Needed project dependencies

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-oauth2-client
</artifactId>

</dependency>

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>

</dependency>

The entire generated POM. xml file with the added dependencies is
shown in Listing 5-4.

Listing 5-4. POM.xml file and dependencies

<?xml version="1.0" encoding="UTF-8"2>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>3.4.0</version>

103

CHAPTER 5 SECURING OAUTH2 AUTHENTICATION FLOW

<relativePath/> <!-- lookup parent from repository -->
</parent>
<groupId>com.apress</groupIld>
<artifactId>OAuth2Securitylogin</artifactId>
<version>0.0.1-SNAPSHOT</version>
<name>0Auth2SecuritylLogin</name>
<description>Demo project for Spring Boot Security and
OAuth2</description>
<properties>
<java.version>23</java.version>
</properties>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupld>
<artifactId>spring-boot-starter-oauth2-client
</artifactId»
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.thymeleaf.extras</groupld>
<artifactId>thymeleaf-extras-springsecurity6
</artifactId>
<version>3.1.1.RELEASE</version>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupld>
<artifactId>spring-boot-starter-test</artifactId>

104

CHAPTER5 SECURING OAUTH2 AUTHENTICATION FLOW

<scope>test</scope>
</dependency>
</dependencies>

<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
</plugins>
</build>

</project>

Let’s build our first Java controller class named UserController, in
Spring MVC, to specify its methods with various annotations such as the
URLs of the endpoint, the HTTP request method, the path variables, etc.

Listing 5-5 will show the UserController Java class.

Listing 5-5. UserController Java class

import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.GetMapping;

@Controller
public class UserController {

@GetMapping("/")
public String homePage() { return "welcome";

}

@GetMapping("/welcome™)
public String welcomePage() {
return "welcome";

105

CHAPTER 5 SECURING OAUTH2 AUTHENTICATION FLOW

@GetMapping ("/authenticated")
public String AuthenticatedPage() {
return "authenticated";

}

@GetMapping ("/logout™)
public String logoutPage() {
return "redirect:/welcome";

The controller Java class will redirect to the welcome.html page
for “/” and “/Welcome” and authenticated.html for “/authenticated”
URLs. Logout mapping is used when logging out the user from Google
authentication.

Let’s create now two needed simple HTML pages as we did previously
in this book:

o welcome.html (Listing 5-6): A simple welcome
page permitted to all users to provide the link to the
authenticated.html page

o authenticated.html (Listing 5-7): A simple HTML
page showing the authenticated (Google) username if
authenticated

Listing 5-6. welcome.html web page

<!DOCTYPE html>
<html xmlns="http://www.w3.0rg/1999/xhtml" xmlns:th="https://
www.thymeleaf.org">
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=IS0-8859-1">

106

CHAPTER5 SECURING OAUTH2 AUTHENTICATION FLOW

<title>Spring Security 6 and OAuth2 Login authentication
example!</title>

</head>

<body>

<div th:if="${param.error}">
Invalid username and password.
</div>
<div th:if="${param.logout}">
You have been logged out.
</div>

<h2>Welcome to Spring Security 6 and OAuth2 Login
authentication example!</h2>

<p>Click <a th:href="@{/authenticated}">here to get
authenticated to Google with OAuth2 Login!</p>

</body>
</html>

Listing 5-7. authenticated.html web page

<!DOCTYPE html>
<html xmlns="http://www.w3.0rg/1999/xhtml" xmlns:th="https://
www.thymeleaf.org"
xmlns:sec="https://www.thymeleaf.org/thymeleaf-extras-
springsecurity6">
<head>
<title>Spring Security 6 and OAuth2 Login authentication
example!</title>
</head>
<body>
<h2>Welcome to Spring Security 6 and OAuth2 Login
authentication example!</h2>

107

CHAPTER 5 SECURING OAUTH2 AUTHENTICATION FLOW

<h2 th:inline="text">You are an authenticated user: thymeleaf
!1</h2>

<form th:action="@{/logout}" method="post">
<input type="submit" value="Logout"/>
</form>

</body>
</html>

5. How to Create the Spring Security
SpringSecurityConfiguration Java Class
to Use OAuth2?

The most important Java class of the example,
SpringSecurityConfiguration, is shown in Listing 5-8.

Listing 5-8. SpringSecurityConfiguration Java class
package com.apress.0Auth2Securitylogin.configuration;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;
import org.springframework.security.config.annotation.web.
builders.HttpSecurity;

import org.springframework.security.config.annotation.web.
configuration.EnableWebSecurity;

import org.springframework.security.web.SecurityFilterChain;
import static org.springframework.security.config.
Customizer.withDefaults;

108

CHAPTER5 SECURING OAUTH2 AUTHENTICATION FLOW

@Configuration
@EnableWebSecurity

public class SecurityConfiguration {

@Bean
SecurityFilterChain securityFilterChain(HttpSecurity http)
throws Exception {
return http
.authorizeHttpRequests(auth -> {
auth.requestMatchers("/", "welcome").
permitAll();
auth.anyRequest().authenticated();
1)
.oauth2Login(withDefaults())
.formLogin(withDefaults())
.build();

The Spring Security Java class will
o Allow all users to access route “/“ or “Welcome”.

o Request any other request, like in our case “/
authenticated’, to be authenticated via Google.

o Use the OAuth2 login method to log in the list of the
providers we listed into the application.properties file
(in our case Google).

o Use the Spring Security v6 FormLogin.

109

CHAPTER 5 SECURING OAUTH2 AUTHENTICATION FLOW

6. How to Configure Google to Be Accessed
via OAuth 2.0 Login?

The first step will be configuring the application properties file as shown in
Listing 5-9.

Listing 5-9. application.properties configuration

Google Login
spring.security.oauth2.client.registration.google.client-id=
<your-google-client-id>
spring.security.oauth2.client.registration.google.client-
secret= <your-google-client-secret>

Configure Spring Security Logging
logging.level.org.springframework.security=TRACE

As we can see, by adding the line .. .registration.google, we are
telling Spring Security that we wish to access those social providers via
OAuth 2.0.

7. How to Generate OAuth2 IDs and Secret
Keys for Google?

To use Google’s OAuth 2.0 authentication method for login, we must set
up a project in the Google API Console to obtain OAuth 2.0 credentials (ID
and secret) to be then added into the application.properties.

Let’s follow these steps to generate the OAuth2 ID and secret key
for Google:

110

CHAPTER5 SECURING OAUTH2 AUTHENTICATION FLOW

1. Firstly, we must create a Google OAuth consent
project and then link a consent to it. Let’s visit the
Google Cloud APIs & Services Console to create
the project and the consent (Figures 5-3 and 5-4)
athttps://console.cloud.google.com/

projectselector2/apis/credentials/consent?pl
i=18&inv=1&invt=Abi-4w.

B | w1 Ossth comsert soven-APsan: X |

v console.cloud.google.com

=

Q Search
RPT APIs and services OAuth consent screen

& Enabled APls nd services

@ Toviewthis page, select a project
i Lbnary

O Credentials

Figure 5-3. The Google Cloud Console web page

= Google Cloud
New Project

You have 12 projects remaining in your quota. Request an increase or
delete projects. Learn more [4

MANAGE QUOTAS [4

Project name *
‘ SpringSecurityProOAuth

°|
Project ID: springsecurityprooauth. It cannot be changed later. EDIT
Location *
‘ H No organisation BROWSE ‘

Parent organisation or folder

Figure 5-4. The Google Cloud Console new project web page

111

https://console.cloud.google.com/projectselector2/apis/credentials/consent?pli=1&inv=1&invt=Abi-4w
https://console.cloud.google.com/projectselector2/apis/credentials/consent?pli=1&inv=1&invt=Abi-4w
https://console.cloud.google.com/projectselector2/apis/credentials/consent?pli=1&inv=1&invt=Abi-4w

CHAPTER 5

2. Now once the project

SECURING OAUTH2 AUTHENTICATION FLOW

is created, we can create a

new consent associated to that project as shown in

Figure 5-5.

[| #1 APis ond services - SpringSecur’ X | +

< C @) https//console.cloud.google.com/a;

= Google Cloud & SpringSecurityProOAuth v
API APIs and services OAuth consent screen

[@1 Editapp registration—APlsand - X |
& Enabled APIs and services Choose how you want to configur < C) https;/console.cloud.google.com/a; edents nsent newApplnternalUser=fal
target users. You can only associ
Library = Google Cloud S SpringSecurityProOAuth v
Credentials User Type)))
API APIs and services Edit app registration
Internal @
OAuth consent screen
Only available to users within ¢ Enabled APIs and services © OAuth consent screen © Scopes © Testusers O sur
Pagexige spreaiments submit your app for verificatic
W Libra
® External @ i
Available to any test user it~ °7 Credentials App information
testing mode and will only be A s This shows in the consent screen, and helps end users know who you are and contact
users. Once your app is ready e -

verify your app. Leam more al

ou think about our OAt

Page usage agreements
App name *
SpringSecurityProOAuth

e of the app asking for consent

User support email *
massimona

App logo

This is your logo. It helps people to recognise your app and is displayed on the OAuth
consent screen.

After you upload a logo, you will need to submit your app for verification unless the app
is configured for internal use only or has a publishing status of Testing’. Learn more 2

BROWSE

Figure 5-5. The Google Cloud Console OAuth consent web page

112

3. Next, go to the Credentials section and select Create

OAuth 2 client ID.

Select “Web application” as the type and enter a
name for the application.

Add the following as authorized redirect URI

(Figure 5-6):

http://localhost:8080/1login/oauth2/

code/google

CHAPTER5 SECURING OAUTH2 AUTHENTICATION FLOW

4. Click “Create” to obtain your client_id and client_
secret for our application.properties file as shown in
Figure 5-6.

[#Pr Create OAuthclientID-APlsan X | 4

&~ G A https: /console.cloud.google.com/apis/credentials/oauthclient?previousPage
= Go gle Cloud & SpringSecurityProOAuth
API APIs and services & Create OAuth client ID

«i» Enabled APIs and services

A client ID is used to identify a single app to Google's OAuth servers. If your app runs on
muiltiple platforms, each will need its own client ID. See Setting up OAuth 2.0 [for more

w ’
w Library information. Learn more [about OAuth client types.
O+ Credentials type *
‘ Web application v ‘
v OAuth consent screen
Name *

S, Pageusage agreements OAuth Security Web Client ‘

The name of your OAuth
ole and will not b

nt. This name is only used to identify the client in the
nd users

The domains of the URIs you add below will be automatically added to
your OAuth consent screen as authorised domains [2.

Authorised JavaScript origins @

=+ ADD URI

Authorised redirect URIs @

For use with requests from a web server

URIs 1%
http://localhost:8080/login/oauth2/code/google

+ ADD URI

Note: It may take five minutes to a few hours for settings to take effect

CREATE CANCEL

Figure 5-6. The Google Cloud Console credential web page

113

CHAPTER 5 SECURING OAUTH2 AUTHENTICATION FLOW

Figure 5-7 shows how the obtained client_id and
client_secret will be used for our application.
properties file.

| OAuth client created

The client ID and secret can always be accessed from Credentials in APIs &
Services

OAuth access is restricted to the test users [listed on your
OAuth consent screen

Client ID

Client secret

Creation date

Status

¥ DOWNLOAD JSON

OK

Figure 5-7. The Google client_id and client_secret

Copy the generated client ID and secret to our example application.
properties:

Google Login
spring.security.oauth2.client.registration.google.client-
id= 740114053442-ekgdruqacmé6cvk3gf7150iu450n0fqns.apps.
googleusercontent.com
spring.security.oauth2.client.registration.google.client-
secret= GOCSPX-3K_W5GVzE1IBzdg qnZ7ZDVLoMWf

The application is ready to be tested.
Run the application and visit http://localhost:8080/welcome. You
will see the welcome.html page shown in Figure 5-8.

114

CHAPTER5 SECURING OAUTH2 AUTHENTICATION FLOW

@ im] D Spring Security 6 and OAuth2 | X == = o

< G ©) localhost3080/we =
Welcome to Spring Security 6 and OAuth2 Login
authentication example!

Click here to get authenticated to Google with OAuth? Logn!

Figure 5-8. The welcome.html page

Clink the “here” link to access the authenticated.html page, which will

automatically redirect to the Spring login web page, which will provide

the list, added in the application.properties of the social providers we are
trying to access via the OAuth2 login authentication method as shown in

Figure 5-9.

@ 0O [Please signin x B - 0 X

< C @® localhost:8080/login w7 = - M

Please sign in

Username |

Password ‘

Login with OAuth 2.0

Google

Figure 5-9. The login web page

115

CHAPTER 5 SECURING OAUTH2 AUTHENTICATION FLOW

Click the “Google” link, and you are then redirected to Google for
authentication.

Next you will authenticate (Figure 5-10) with your Google account
credentials, and you will see the consent screen, which will ask you to
either allow or deny access to the OAuth Client you created earlier. You will
click “Allow” to authorize the OAuth Client to access your email address
and basic profile information.

Finally, the OAuth Client retrieves your email address and all the basic
profile information from the UserInfo Endpoint that you configured in
Google and establishes an authenticated session.

~

G Sign in with Google
Choose an account

to continue to SpringSecurityProOAuth

;’J’\ Massimo’s Programming Channel
massimonardonedevchannel@gmail.com

® Use another account

To continue, Google will share your name, email address,
language preference, and profile picture with
SpringSecurityProOAuth

English (United States) - Help Privacy Terms

Figure 5-10. The Google account selection web page

116

CHAPTER5 SECURING OAUTH2 AUTHENTICATION FLOW

If the Google client credential configured in the Spring application will
match the Google OAuth configured ID and secret, then the user will be
authenticated, showing the unique username, as shown in Figure 5-11;
otherwise, a message error of not authenticated will be displayed.

M) [Spring Security 6and OAuth2Lo X | - — (] X
< G (@ localhost:8080/authenticated?continue A 7Y] o= % ‘s’ . ‘Ll;'/\"
Welcome to Spring Security 6 and OAuth2 Login authentication example!
You are an authenticated user: 106928015414473251639!

| Logout |

Figure 5-11. Google user is authenticated

We successfully demonstrated how to configure OAuth2 login
for Google.

Summary

In this chapter, we showed how Spring Security can be a very extendable
and customizable framework as it is built using object-oriented principles
and design practices so that it is open for extension and closed for
modification. This chapter showed how to use one of the most used
authorization frameworks named Open Authorization 2.0 (OAuth 2.0) and
how to develop login security applications using Spring Boot, Spring Web,
and OAuth2 Client (security) to authenticate toward Google as a provider.

117

Index

A, B Hypertext Transfer Protocol (HTTP)
methods/verbs, 5-6

Application programming status codes. 6-7

interfaces (APIs), 1
definition, 2, 3
HATEOAS, 3 J , K, L
JavaScript Object Notation, 3, 4
JWT authentication, 58
RESTful APIs (see RESTful APIs)
security techniques, 37

Authentication/authorization
JWT (see JSON Web
Token (JWT))
OAuth 2.0,91-117
working process, 47, 48

Java programiming
CustomerUserDetailsService
class, 67
repositories, 62-67
role class, 58-62
RoleRepository class, 63
Spring Security class, 66
SpringSecurityConfig class, 64
user model class, 60
UserRepository class, 63
C,D,E,F,G JavaScript Object Notation (JSON),
3-4,11, 30
JSON Web Token (JWT)
advantages, 48
definition, 45

Cross-Origin Resource Sharing
(CORS), 17,19,21,31

Cross-Site Request Forgery
(CSRF), 66, 95

header, 45
JWT (see JWT authentication)
H ’ I payload, 46
Hypermedia As The Engine Of POM.xml files, 52
Application State signature, 46
(HATEOAS), 3 working diagram, 47, 48
© Massimo Nardone 2025 119

M. Nardone, Secure RESTful APIs, Apress Pocket Guides,
https://doi.org/10.1007/979-8-8688-1285-9

https://doi.org/10.1007/979-8-8688-1285-9#DOI

INDEX

JWT authentication (@)
APIs methods, 58, 59
application.properties

file, 56, 57
BearerToken class, 74, 75
Java, role classes, 58-62
JwtAuthenticationFilter

class, 68-70
JwtUtilities class, 70-74
LoginDto class, 75
PostgreSQL DB, 49, 50
Postman testing tool, 85

credentials, 86
email/password, 87
installation, 85

OAuth 2.0, see Open Authorization
2.0 (OAuth 2.0)
Open Authorization 2.0
(OAuth 2.0)
advantages, 93
application.properties
configuration, 110
components, 92
configuration, 97
definition, 92
Google
account selection, 116
client_id and client_

loged a8 secret, 114
088INg process, cloud console web
REST GET API, 85, 86

page, 111

USER role, 87

wrong password, 88
PublicRestController

class, 76

RegisterDto class, 75, 76
repositories, 62-67
role models, 58
Spring Initializr, 50-56

consent web page, 112

credential web page, 113

ID and secret key, 110

login web page, 115

user configuration, 117

welcome.html page, 115
identity provider (IdP), 100
login process, 100

UserRestController .
| 26, 77 Maven project structure,
cass, (o, 102, 103
web app, 57

project dependencies
authenticated.html web
M, N page, 107

Multi-factor Authentication HTML pages, 106
(MFA), 28 POM.xml file, 103-105

120

UserController Java
class, 105

welcome.html web page, 106

resource server, 98

security considerations, 94-96

Spring Security, 96-99

SpringSecurityConfiguration
class, 108, 109

token-based mechanism, 92

P, Q
PostgreSQL DB, 49, 50, 89
Protection
definition, 23
fundamentals, 24
objectives, 23
organizations/individuals, 24
security, 26

types, 25

R

Representational State
Transfer (REST)
APISs (see Application
programming
interfaces (APIs)
REST (see RESTful APIs)
SOAP differences, 1, 2
RESTful APIs
advantages, 9-12
components, 8, 9
concepts, 4

INDEX

disadvantages/limitations, 10
HTTP
description, 6
methods/verbs, 5
request status code, 6
OAuth 2.0,91-117
process flow, 12
protection/validation, 23-42
risk factors
authentication and
authorization controls, 18
CORS configurations, 19
encrypt data, 18
injection attacks, 18
input validation, 20
log and monitor, 20
mitigation strategies,
21,22
object level, 19
parameters, 19
rate limiting, 19
sensitive information, 18
sources of, 17
third-party libraries, 20
security concerns, 15-17
usage of, 7, 8

S, T

Security techniques

API gateways/firewalls, 30
API keys, 37

audits and updates, 31
authentication, 27, 34

121

INDEX

Security techniques (cont.) Simple Object Access Protocol
authorization, 28 (SOAP), 1,2,13
content security, 30, 38 Spring Initializr project, 50-56

endpoint (Spring Boot), 34
error handling and logging, 30 U

headers, 31
HTTPS implementation, 33 Uniform Resource Identifier
input validation/sanitization, 35 (URI), 4, 112
logging and monitoring,
32,39 \'}
minimization, 32 Validation

OAuth 2.0 authorization, 36
principles, 27-34

rate limiting, 29, 36
role-based access control, 35

annotations, 41
client/server, 41
controller, 42
definition, 39
dependency, 41
handle errors, 42
Spring Boot, 41
types, 40

secure data storage, 29

secure documentation, 33

sensitive information, 38

throttling, 29

token-based authentication, 27

token expiration and

revocation, 29 W’ X, Y, Z

validation/sanitization, 28 Web Application Firewalls

(WAF), 22, 30

122

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to RESTful APIs
	What Are the Major Differences Between REST and SOAP?
	How to Combine REST and API to Create RESTful API?
	What Is JSON?
	What Are the RESTful API Key Concepts?
	What Are the HTTP Methods or Verbs?
	What Are the HTTP Request Status Codes?
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution

	Summary

	Chapter 2: Key Security Concerns and Risks for RESTful APIs
	What Are the RESTful API Key Security Concerns?
	What Are the Most Common Sources of Risk?
	What Are the Common Risks Associated with RESTful APIs?
	What Are the Most Common RESTful APIs Risk Mitigation Strategies?
	Summary

	Chapter 3: Data Protection and Validation for RESTful APIs
	What Is Data Protection?
	1. What Are the Main Key Objectives of Data Protection?
	2. Why Is Data Protection Important?
	3. What Are the Most Common Data Protection Practices?
	4. What Are the Most Important Types of Data Protection?

	RESTful API Data Security
	5. What Are the Key Principles for RESTful API Data Security?
	6. What Does RESTful API Security Look Like?

	Why Do Data Validation for RESTful APIs and How?
	Problem
	Solution
	7. How to Perform Data Validation in RESTful APIs?

	Summary

	Chapter 4: JSON Web Token (JWT) Authentication
	What Is JSON Web Token (JWT)?
	1. How Do We Create a New DB and User in PostgreSQL?
	2. How Do We Create a New Project with Spring Initializr?
	3. How Do We Configure the application.properties File with Information About the DB Used, the JPA/JWT, and Server Configuration?
	4. How Do We Generate a JWTsecret Value for Our Project?
	5. How Do We Create New APIs for Our Project?
	6. How Do We Create New User and Role Models for Our Project?
	7. How Do We Create New Role Java Classes for Our Project?
	8. How Do We Create New Repository Java Classes for Our Project?
	9. How Do We Create a JWT Authentication Filter for Our Project?
	JWT Authentication Filter

	10. How Do We Create the Spring REST APIs Controller?
	11. How to Test Our Project?
	Summary

	Chapter 5: Securing OAuth2 Authentication Flow
	RESTful APIs and OAuth 2.0
	OAuth2 Introduction
	OAuth2 Security
	1. How to Integrate OAuth2 with Spring Security for RESTful APIs?
	2. What Is OAuth2 Login?
	3. How to Develop an OAuth2 and Spring Security Project?
	4. What Are the Needed OAuth2 and Spring Security Dependencies?
	5. How to Create the Spring Security SpringSecurityConfiguration Java Class to Use OAuth2?
	6. How to Configure Google to Be Accessed via OAuth 2.0 Login?
	7. How to Generate OAuth2 IDs and Secret Keys for Google?
	Summary

	Index

